RAGE AGAINST THE MACHINE CLEAR

A Systematic Analysis of Machine
Clears and Their Implications for
Transient Execution Attacks

Enrico Herbert Cristiano
Barberis Bos Giuffrida

“VUSec

Vrije Universiteit Amsterdam

Outline

1. Background

2. Machine Clears
3. Firefox Exploit
4. Results

Side Channels 101

Side Channels 101

News > World > Europe

Melting snow being used by police to
find cannabis farms in the
Netherlands

Snow-free roofs can indicate the high temperatures needed to grow the drug

Lizzie Dearden | Tuesday 10 February 2015 13:31 | comments @ o o @
< e > WA 5 Y 4 & g (ol ¥
\ . & . X I i) { 4

Flush+Reload Attack

Attacker

Victim

Data cache
(shared resource)

array
[1]

array

[2]

& Cached
] Not cached

Flush+Reload Attack

Attacker

Flush cache

Victim

Data cache array
(shared resource) [0]

array

[1]

array

[2]

& Cached
] Not cached

Flush+Reload Attack

Attacker Victim

Flush cache
if (crypto_key bit[i] == 0):
X = array[@];
else:
X = array[1l];

Data cache array | array | array [Cached
(shared resource) [@] [1] [2] e] Not cached

Flush+Reload Attack

Attacker Victim

Flush cache
if (crypto_key bit[i] == 0):
X = array[@];
else:
X = array[1l];

Data cache array | array | array [Cached
(shared resource) [@] [1] [2] e] Not cached

Flush+Reload Attack

Attacker

Flush cache

Victim

if (crypto_key bit[i] == 0):

X = array[@];
else:
X = array[1];
Reload cache
Data cache array | array | array
(shared resource) [@] [1] [2]

& Cached
] Not cached

Flush+Reload Attack

Attacker

Flush cache

Victim

if (crypto_key bit[i] == 0):

X = array[@];
else:
X = array[1];
Reload cache
Data cache array | array | array
(shared resource) [@] [1] [2]

X

& Cached
] Not cached

Flush+Reload Attack

Attacker Victim

Flush cache
if (crypto_key bit[i] == 0):

X = array[@];
else:
X = array[1l];
Reload cache ¢
Data cache array array [Cached
(shared resource) [@] [2] e [] Not cached

X <7

Flush+Reload Attack

Attacker Victim

Flush cache
if (crypto_key bit[i] == 0):

X = array[@];
else:
X = array[1l];
Reload cache ¢
Data cache array array [Cached
(shared resource) [@] [2] e [] Not cached

X X X

Transient Execution

Data cache
(shared resource)

if (x < array_size) {

by

y = array[x]

array

[x-1]

array

[x]

array
[x+1]

[Cached
] Not cached

Transient Execution

Data cache
(shared resource)

if (x < CEEVIRERR) {

by

y = array[x]

array

[x-1]

array

[x]

array
[x+1]

[Cached
] Not cached

Transient Execution

Data cache
(shared resource)

if (x < CEREVIRRE) {
y = array[x]

}
array array
[x-1] [x+1]

[Cached
] Not cached

Transient Execution

Data cache
(shared resource)

s J(x < array_sizepB
y—=—arrayfx]

}
array array
[x-1] [x+1]

[Cached
] Not cached

Transient Execution

Data cache
(shared resource)

s J(x < array_sizepB
y—=—arrayfx]

}
array array
[x-1] [x+1]

XX XX

[Cached
] Not cached

Transient Execution Attacks

Spectre Microarchitectural
P Data Sampling
(MDS)
CrossTalk
(SRBDS)
Vi V2 V4)
Branch Branch Speculative Tran.;acuon L1 Vector
History Target Store Fill/ Store Load Aser:b:;?: °Y Data Register
Table Buffer Bypass Buffer Buffer Port Eviction

2017 2018
V3
{ L1
Terminal
Meltdown Fault Load Value

Snoop

Spectre v5 Injection
(RSB) (LVI)

2021

2017

Transient Execution Attacks

Spectre Microarchitectural
P Data Sampling
(MDS)
CrossTalk
(SRBDS)
Vi V2 V4)
Branch Branch Speculative Tran.;actwn L1 Vector
History Target Store Fill/ Store Load Aser:b:;?: °Y Data Register
Table Buffer Bypass Buffer Buffer Port Eviction

2018
V3
{ L1
Terminal
Meltdown Fault Load Value
Spectre v5 Injection Snoop
(RSB)

(LV1)

Machine Clear

Floating-Point

Yalt{e Speculative Code
Injection Store

Bypass

2021

Bad Speculation

The root cause of discarding issued uOps on x86 processors

Bad Speculation

The root cause of discarding issued uOps on x86 processors

Branch Misprediction

Bad Speculation

The root cause of discarding issued uOps on x86 processors

Branch Misprediction Machine Clear

Bad Speculation

The root cause of discarding issued uOps on x86 processors

Branch Misprediction Machine Clear

%

Bad Speculation

The root cause of discarding issued uOps on x86 processors

Branch Misprediction Machine Clear
& Faults & Intel TSX

r
-

Bad Speculation

The root cause of discarding issued uOps on x86 processors

Branch Misprediction Machine Clear

& Faults & Intel TSX
] o

404 LOGO NOT FOUND

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

Memory Ordering
Machine Clear

Memory Disambiguation
Machine Clear

10

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

10

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

|

Speculative Code
Store Bypass
(SCSB)
Negligible mitigation
overhead

Floating-Point
Machine Clear

10

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

|

Speculative Code
Store Bypass
(SCSB)
Negligible mitigation
overhead

Floating-Point
Machine Clear

|

Floating-Point
Value Injection
(FPVI)

53% Mitigation
overhead

10

Rage Against The Machine Clear

Self-Modifying Code Floating-Point
Machine Clear Machine Clear

|

End-to-end exploit
leaking arbitrary
memory in Firefox

With a leakage rate
of 13 KB/s

10

Security Analysis of Machine Clear

1. Architectural Invariant
2. Invariant Violation
3. Security Implications

4. Exploitation

11

SELF-MODIFYING CODE
MACHINE CLEAR

Self-Modifying Code Machine Clear

13

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

13

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

il: ...

i2: store nop @ i3
i3: load secret
i4: ...

i5:

13

Self-Modifying Code Machine Clear

data, modifying its own code as it is being executed

Self-Modifying Code is a program storing instructions as

il: ... IF | ID | EX MEM| WB

i2: store nop @ i3 IF | ID | EX |MEM| WB

i3: load secret IF | ID | EX |MEM | WB

i4: .. IF | ID | EX |MEM| WB

is IF | ID EX MEM| WB

t-1

t
Current
Stage

t+l

t+2

t+3

t+4

13

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

il: ... II:_,,/ID——EX~-.'1§M WB
i2: store nop @ 33— |\ IF | ID | EX |MEM| W8
i3: load secret \(ou'rjoj "P | IF | ID | EX |MEM| WB
e IF | ID | EX |MEM| WB
IF | ID | EX |MEM| WB

i5:

t-4 t-3 t-2 t-1

t
Current
Stage

t+l

t+2

t+3

t+4

13

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

it: ... IF | ID | EX |MEM| WB
i2: store nop @ i wait‘-”'IF ID ET MEM | WB
i3: load secret you's* ® "P | IF | ID | EX |[MEM| WB
e ™~ 7| IF|ID | EX MEM| wB
Too late ... IF | ID | EX [MEM| WB

i5: ... Machine Clear

t-4 t-3 t-2 t-1

t
Current
Stage

t+l

SMC Detection
Transiently Done

t+2

t+3

t+4

13

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant

Stores always target data i IF 1D _Ex‘ﬁfi WB
i2: store nop @ i wait‘-”'IF ID | EX |[MEM| WB
i3: load secret You'r:o: "P | TF | ID | EX |MEM| WB
e \/ IF | ID | EX [MEM| WB
Too late ... IF | ID | EX |[MEM| WB

i5: ... Machine Clear

t-4 t-3 t-2 t-1

t
Current
Stage

t+l

SMC Detection
Transiently Done

t+2

t+3

t+4

13

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant

Stores always target data

Invariant Violation

Self-Modifying Code

i2:
i3:
i4: ...

i5: ...

il: ...

IF | ID | EX |MEM| WB
store nop @ i wait‘-”'IF ID ET MEM| WB
Load seeret vou'=® ® ™" | TF | ID | EX |MEM| WB
™~ 7| IF|ID | EX MEM| wB
Mashing Glear B ID | EX [MEM) W8
t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Current

Stage

SMC Detection
Transiently Done

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation

Self-Modifying Code

Security Implications
Transiently execute stale code

il: ...
i2:
i3:
i4: ...

i5: ...

IF | ID | EX |MEM| WB
store nop @ i wait‘-”'IF ID ET MEM| WB
load secrer You'r:(): " | IF | ID | EX |[MEM| WB
™~ 7| IF|ID | EX MEM| wB
Mashing Glear B ID | EX [MEM) W8
t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Current
Stage

SMC Detection
Transiently Done

13

Self-Modifying Code Machine Clear

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation

Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
?

il: ...
i2:
i3:
i4: ...

i5: ...

IF | ID | EX |MEM| WB
store nop @ i wait‘-”'IF ID ET MEM| WB
load secrer You'r:(): " | IF | ID | EX |[MEM| WB
™~ 7| IF|ID | EX MEM| wB
Mashing Glear B ID | EX [MEM) W8
t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Current
Stage

SMC Detection
Transiently Done

13

Speculative Code Store Bypass (SCSB)

14

Speculative Code Store Bypass (SCSB)

CODE
VIEW | eatt £ I G

PléIIIEIbA\I L £ | g code

Speculative Code Store Bypass (SCSB)

CODE
VIEW

DATA
VIEW

JIT £ & JIT £ &

call £ I g code call £ I g code I
JIT £ & JIT £ &

call £ [[a code call £ | T code

14

Speculative Code Store Bypass (SCSB)

CODE
VIEW

DATA
VIEW

JIT £ & IIT £ &

call £ I g code call £ I g code I
@ L2 sme me

IIT £ & JIT £ &

call £ [[a code call £ | T code

14

Speculative Code Store Bypass (SCSB)

CODE
VIEW

DATA
VIEW

JIT £ & JIT £ & JIT £ &

call £ I 9 code call £ I 9 code I call £ I £ code I
@ L2 sme me (%)

JIT £ & JIT £ & IIT £ &

call £ | 9 code call £ | F code call £ | f code

14

Speculative Code Store Bypass (SCSB)

CODE
VIEW

DATA
VIEW

JIT £ & JIT £ & JIT £ &

call f I 9 code call f I 9 code I call f I £ code I
@ L2 sme me (%)

JIT £ & JIT £ & JIT £ &

call £ | 9 code call £ | F code call £ | f code

8.1.3 Handling Self- and Cross-Modifying Cod

e

(* OPTION 1 %)
Store modified code (as data) into code segment;
Jump to new code or an intermediate location;

Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

14

Speculative Code Store Bypass (SCSB)

CODE
VIEW

DATA
VIEW

JIT £ & JIT £ & JIT £ &

call f I 9 code call f I 9 code I call f I £ code I
@ L2 sme me (%)

JIT £ & JIT £ & JIT £ &

call £ | 9 code call £ | F code call £ | f code

8.1.3 Handling Self- and Cross-Modifying Cod

e

(* OPTION 1 %)
Store modified code (as data) into code segment;
Jump to new code or an intermediate location;

Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

14

Speculative Code Store Bypass (SCSB)

Listing 2 Chromium instruction cache flush
(chromium/src/v8/src/codegen/x64/cpu-x64.cc)

void CpuFeatures::FlushICache (void* start, size_t size) {

he on Intel x/ ...}

Listing 3 Firefox instruction cache flush
(mozilla-unified/js/src/jit/FlushICache.h)

inline wvoid FlushICache (wvoid* code, size_t size,
bool codelsThreadLocal = true) {

PN ind xé64. */ '}

14

Speculative Code Store Bypass (SCSB)

Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
Speculative Code Store Bypass

14

MEMORY ORDERING
MACHINE CLEAR

Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

16

Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @

PROCESSOR A PROCESSOR B
rl = [X] (slow) | [X] =1
r2 = [Y] (fast) | [Y]1 =1
r3 = f(r2)

16

Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @
PROCESSOR MEMORY PROCESSOR
A B

PROCESSOR A PROCESSOR B SUBSYSTEM

rl = [X] (slow) || [X] =1

r2 = [Y] (fast)| [Y]1 =1

r3 = £(r2) issue rl = [X] \
Cache MISS!

issue r2 = [Y] K
T Cache HIT!
/,\:11,_,_’—’—
r2 =0 |d

issue r3 = f(r2)

16

Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @
PROCESSOR MEMORY PROCESSOR
A B

PROCESSOR A PROCESSOR B SUBSYSTEM

rl = [X] (slow) || [X] =1

r2 = [Y] (fast)| [Y]1 =1

r3 = £(r2) issue rl = [X] \
Cache MISS!

issue r2 = [Y] K
\]L Cache HIT!
to- ; L
Ready-to-commit /v 2 =0 ‘/

Waiting for r1=[x]
to reflect the TSO issue r3 = £(r2)

16

Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @
PROCESSOR MEMORY PROCESSOR
A B

PROCESSOR A PROCESSOR B SUBSYSTEM

rl = [X] (slow) || [X] =1

r2 = [Y] (fast)| [Y]1 =1

r3 £(r2) issue rl1 = [X] \—.
Cache MISS!

issue r2 [Y]H
\]> Cache HIT!
-to- ; L
Ready-to-commit /v r2 =0 4/

Waiting for r1=[x]

to reflect the TSO issue r3 = £(x2) K’E’S_—L’L\L]”"
rl =1

1
1

issue [X]
issue [Y]

16

Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @

PROCESSOR A
rl = [X] (slow)

r2 = [Y] (fast)
r3 = f(r2)

PROCESSOR B
[X]=1
[(Yl=1

PROCESSOR MEMORY PROCESSOR
A SUBSYSTEM B
Memory Ordering Model
Violation Detection
issue r1 = [X] \ Transiently Done
I
|issue 2 = [Y]| Cache MISS!
Cache HIT!
- issue [X] =1
|1ssue r3 = f(:2)| ‘__’/[X'LLY—'—]—/ issue [Y] =1
x'1
r1=1 Wait!!!
Too late ... Y has been
Machine Clear updated
Y Y A

16

Memory Ordering Machine Clear

Architectural Invariant
000 execution always complies with TSO

Invariant Violation
Memory ordering model violation

Security Implications
Transiently leak stale data

Exploitation
Non-trivial due to strict
synchronization requirements

17

FLOATING-POINT
MACHINE CLEAR

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)

19

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)

il: Z=X/Y
i2: 2 =2 + 1
i3: ...

19

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)

CPU FPU

Z=X/Y
Check Z

il: Z X/Y z=2z+1 :
i2: Z Z+1

i3: ... []

1
1
1
1
1
1
1
A\

t0

t1

t2

t3

19

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)

CPU FPU
Z=X/Y
Check Z
il: Z2=X/Y Z=2+1 :
Wait!!!
i2: 2 =2 + 1 Z is not

1
:
1
] represented !
i3: ... correctly :
|
Y

Zz

t0

t1

t2

t3

19

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)

CPU FPU

Z=X/Y
Check Z

il: Z2=X/Y z=2z+1 :
Wait!!! \

i2: Z=2Z + 1 Z is not :
. represented i
i3: ... III correctly |
|

Too late Y

FP Denormal Detection
Transiently Done

t0

t1

t2

t3

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)

Architectural Invariant
FPU always operates on
normal numbers

FPU

il: Z2=X/Y
i2: 2=2 + 1

i3: ...]

Too late ...
Machine Clear

Wait!!!
Z is not
represented
correctly

Z=X/Y
Check Z

Y

z
is Denormal

FP Denormal Detection
Transiently Done

t0

t1

t2

t3

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)

Architectural Invariant
FPU always operates on
normal numbers

Invariant Violation
Subnormal FP operations

il: Z
i2: Z

i3: ...

CPU FPU

Z=X/Y
Check Z

X/7Y zZ=2z+1 -
Wait!!!
Z+1 Z is not
represented
Too late Y

FP Denormal Detection
Transiently Done

t0

t1

t2

t3

19

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)

Architectural Invariant
FPU always operates on
normal numbers

i1: Z
Invariant Violation i2: z
Subnormal FP operations i3: ...

Security Implications
Transiently inject arbitrary FP values

Z+1

Z=X/Y
Check Z
Z=2+1 - X
Wait!!! |
Z is not X
represented i
correctly :
|
Too late ... A4

Machine Clear

z
is Denormal

FP Denormal Detection
Transiently Done

t0

t1

t2

t3

Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)

Architectural Invariant
FPU always operates on
normal numbers

il: Z=X/ Y
Invariant Violation i2: Z2=2 +1
Subnormal FP operations i3: ...

Security Implications
Transiently inject arbitrary FP values

Exploitation

CPU FPU
Z=X/Y
Check Z
Z=2+1 -
Wait!!! |
Z is not X
represented

Too late ...
Machine Clear

1
Y

z
is Denormal

FP Denormal Detection
Transiently Done

t0

t1

t2

t3

FPVI EXPLOIT

1. Attack Setup

@ FPVI Exploit

«

Victim page: http://localhost:8080/index.html

SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET

CSECRET

Cc @

SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET

SECRET

SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET

CECRET

© [localhost:8080/index.html

SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET

CECRET

SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET

CSECRET

SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET

CSECRET

SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET

SECRET

SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET

CECRET

SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET
SECRET

CECRET

150%

I @

Attacker iframe: http://10.0.0.104:8080/attacker.html

Auto-attack Calibrate

Addr: Oxdeadbeef000

Leak

- T

LI

22

2. Finding Operands

enrico@i9-9900K: find operands$./find operands| Oxdeadbeef000
Finding X,Y for target 0x00000deadbeef000

X = OxbffbOdeadbeef00/ -1.69089/807/2306127e+00
Y = 0x0000000000000001 4.9406564584124654e-324

24

2. Finding Operands

enrico@i9-9900K: find operands$./find operands| Oxdeadbeef000
Finding X,Y for target 0x00000deadbeef000

X = OxbffbOdeadbeef00/ -1.690897/8072306127e+00

Y Ox0000000000000001 4.9406564584124654e-324

enrico@i9-9900K:test operands$./test operands OxbffbOdeadbeef007 LOx0000000000000001

OxbffbOdeadbeef007 -1.690898e+00
Ox0000000000000001 4.940656e-324
AxfffAAAAAAANAAANANA -inf
OxfffbOdeadbeef0OO -nan

X
y
arch_res
trans res

24

3. Memory Leak

Ox£££fbOdeadbeecf00
JSVAL_TYPE_STRING
PAYLOAD:
Oxdeadbeef000

25

3. Memory Leak

Ox£££fbOdeadbeecf00
JSVAL_TYPE_STRING
PAYLOAD:
Oxdeadbeef000

~N

//X = BxclBBe8b2c9755600

//y = 0x0004000000000000

z = X/y

if (typeof z === "string") {

25

3. Memory Leak

Ox£££fbOdeadbeecf00
JSVAL_TYPE_STRING
PAYLOAD:
Oxdeadbeef000

Ox£££0000000000000
JSVAL_TYPE_DOUBLE

PAYLOAD:
-Infinity

z = X/y

J

//X = 0xcBBBe8b2c9755600
//y = 0x0004000000000000

if (typeof z === "string") {
+» //z = OxfffbOdeadbeefddd

\‘i‘ else {
return z //z=-Infinity

25

3. Memory Leak

Ox££fbOdeadbeef000 | OxEE£0000000000000
JSVAL_TYPE_STRING | JSVAL_TYPE_DOUBLE

PAYLOAD: PAYLOAD:
Oxdeadbeef000 -Infinity

//X = 0xcBBBe8b2c9755600
//y = 0x0004000000000000
z = X/y
if (typeof z === "string") {
//z = Oxfffb0deadbeefdBd
//Lleak byte @ Oxde ef004
return buf[(z.length&Oxff)<<10]
} else {
return z //z=-Infinity

b

25

4. ASLR Bypass

OxXFFFF....
(_
Firefox
Process
\—
0x0000....

Secret

Attacker
Spray

26

4. ASLR Bypass

OxFFFF....
[
Firefox
Process
_
0x0000....

Secret

Attacker
Spray

26

27

http://drive.google.com/file/d/1NdZqMVuVI-jtVwUn5VxQodGp6XKBTKB0/view

Floating-Point Value Injection (FPVI)

Exploit leakage rate of 13 KB/s

Wait!!!
Z is not

represented
[| comectty
Too late

Machine Clear _

FP Denormal Detection
Transiently Done

te

t1

t2

t3

31

Floating-Point Value Injection (FPVI)

Exploit leakage rate of 13 KB/s
Mitigations:

= Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

- We implemented a LLVM pass adding a serializing

instruction in detected FPVI gadgets.
With 53% geomean overhead for SPEC FP 2017.

- Use site-isolation or conditionally mask FP operations

in the browsers.

CPU

FPU

Too late ...
Machine Clear

Wait!!!
Z is not
represented
correctly

Z=X/Y

Check 2

I -

z

FP Denormal Detection
Transiently Done

te

t1

t2

t3

31

MEMORY
DISAMBIGUATION
MACHINE CLEAR

Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

33

Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet
Px1234 contains "Secret"

Store "Hello" to OxXXXX
Load from Ox1234

33

Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet CPU: Are these the same
Ox1234 contains "Secret" address?

Store "Hello" to |[OxXXXX
Load from Ox1234

33

Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet CPU: Are these the same
Ox1234 contains "Secret" address?

MDU: | predict they’re not
L the same (i.e. No-Alias)

Store "Hello" to |[OxXXXX
Load from Ox1234

33

Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet CPU: Are these the same
Ox1234 contains "Secret" address?

MDU: | predict they’re not
Store "Hello" to GXXXXX.‘ the same (i.e. No-Alias)

Load from Ox1234 CPU: OK, I will not wait to resolve 0xXXXX,
Load Out-of-Order 0x1234 (i.e. “Secret”)

33

Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet CPU: Are these the same
@x1234 contains "Secret" address?
MDU: | predict they’re not
1] "
Load from 0x1234 CPU: OK, I will not wait to resolve OxXXXXX,
Load Out-of-Order 0x1234 (i.e. “Secret”)

Memory Disambiguation
Misprediction Detection
Transiently Done

33

Memory Disambiguation Machine Clear

Architectural Invariant
Stores followed by Loads are always
disambiguated correctly

Invariant Violation
MDU misprediction

Security Implications
Transiently leak stale data

Exploitation
Spectre v4 (Speculative Store Bypass)

34

Other types of Machine Clear

AVX vmaskmov
Exceptions
Hardware interrupts
Microcode assists

35

RESULTS

Let's zoom out a bit ...

37

Let's zoom out a bit ...

Self-Modifying Code

il: ...
i2: store nop @ i3

i3: load secret

Machine Clear Detection

Transiently Done

37

Let's zoom out a bit ...

Self-Modifying Code

il:
i2: store nop @ i3

i3: load secret

Machine Clear Detection

Transiently Done

PROCESSOR A PROCESSOR B

rl = [X] (slow) [X] =1
r2 = [Y] (fast) [Y] =1
r3 = f(r2)

Memory Ordering

37

Let's zoom out a bit ...

Self-Modifying Code

il:
i2: store nop @ i3

i3: load secret

Machine Clear Detection

Floating-Point

il: Z
i2: Z
i3:

X/7Y
Z +1

Transiently Done

PROCESSOR A PROCESSOR B

rl = [X] (slow) [X] =1
r2 = [Y] (fast) [Y] =1
r3 = £(x2)

Memory Ordering

37

Let's zoom out a bit ...

Self-Modifying Code Floating-Point

il: ... il: Z2 =X/ Y
i2: store nop @ i3 i2: 2 =2 + 1

i3: load secret i3:
Machine Clear Detection
Transiently Done
PROCESSOR A PROCESSOR B i1: store "Hello" to @xXXXX
rl = [X] (slow) [X] =1
r2 = [Y] (fast) [Y] =1 i2: load from Ox1234
r3 = £(x2)

Memory Ordering Memory Disambiguation

37

I
H O
oo

NBOODOON
COO0OO0OO0OO0OO0O

Number of
Transient Loads

Leakage Rate
[Mb/s]

Transient Execution Capabilities

| AMD Ryzen 7 2700X

CPU

| == Intel Core i7-10700K
7 EE=8 Intel Xeon Silver 4214
1 OID Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

4 B AMD Ryzen 5 5600X

AMD Ryzen Threadripper
B 5990wx

o = N W »

IR RN AR

TSX

FAULT SMC XMC
Transient Execution Management

38

Number of
Transient Loads

Transient Execution Capabilities

CPU

| == Intel Core i7-10700K
71 E=3 Intel Xeon Silver 4214
1 OO Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

4 B AMD Ryzen 5 5600X

—— AMD Ryzen Threadripper
il 2990wx

1 AMD Ryzen 7 2700X

Tl el
H O
oo

NPBOOON
COO0OO0OO0OO0OO0O

(LTI

Leakage Rate
[Mb/s]

o = N W »

(I RN

Architectural
upper limit
leakage rate

FAULT SMC XMC
Transient Execution Management

38

Number of
Transient Loads

Transient Execution Capabilities

CPU

| == Intel Core i7-10700K
71 E=3 Intel Xeon Silver 4214
1 OO Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

4 B AMD Ryzen 5 5600X

—— AMD Ryzen Threadripper
il 2990wx

1 AMD Ryzen 7 2700X

Tl el
H O
oo

NPBOOON
COO0OO0OO0OO0OO0O

(LTI

Leakage Rate
[Mb/s]

o = N W »

Architectural
upper limit
leakage rate

(Q-v U

FAULT SMC XMC
Jransient Execution Management

38

Number of
Transient Loads

Transient Execution Capabilities

1601 CPU

140 | mmm intel Core i7-10700k
120 1 == Intel Xeon Silver 4214
100 1 mmm Intel Core i9-9900K
80 1 E=3 Intel Core i7-7700K
60 | == AMD Ryzen 5 5600X

401 == AMD Ryzen Threadripper
il 2990wx

201 AMD Ryzen 7 2700X

(LTI

Leakage Rate
[Mb/s]

/

Available
only on
Intel

(Q-HIHH T

BHT FAULT SMC XMC FP MD MO
Jransient Execution Management

Architectural
upper limit
leakage rate

38

Number of
Transient Loads

Transient Execution Capabilities

1601 CPU

140 | mmm intel Core i7-10700k
120 1 == Intel Xeon Silver 4214
100 1 mmm Intel Core i9-9900K
80 1 E=3 Intel Core i7-7700K
60 | == AMD Ryzen 5 5600X

401 == AMD Ryzen Threadripper
s 2990wXx

20 1 AMD Ryzen 7 2700X

/

Leakage Rate

T, | - IEJ

Available
only on
Intel

FAULT SMC XMC
Jransient Execution Management

Architectural Not supported
upper limit anymore on
leakage rate recent CPUs

38

Number of

Transient Execution Capabilities

o 1601 CPU
T 140 | mmm intel Core i7-10700K
9 120 1 =3 intel Xeon Silver 4214
= 100 mm intel Core i9-9900K
S 80 E=3 Intel Core i7-7700K
‘B 60 EE AMD Ryzen 5 5600X
‘% 401 == gglg%\l;?;(zen Threadripper =
= 28 1 AMD Ryzen 7 2700X M;
o 5 Available
= - / only on
& = Intel
~ —} =3
@ — -
; = l I
= ’ ME = : : NS | | NS VIS
TSX BHT FAULT SMC XMC FP MD MO
|\ Jransient Executlon Management J
Architectural Not supported Available
upper limit anymore on also on AMD

leakage rate recent CPUs

38

Number of
Transient Loads

Transient Execution Capabilities

SMC can reach > 160 transient
,/ loads in a single window o

160 A CPU

140 1 gmm intel Core i7-10700K
120 1 =3 Intel Xeon Silver 4214
100 1 mmm Intel Core i9-9900K
80 1 E=3 Intel Core i7-7700K
60 | == AMD Ryzen 5 5600

4 == AMD Ryzen Threadripper
40 2990WX =
201 AMD Ryzen 7 2700X =

Available

/ only on
IE Intel

Leakage Rate
[Mb/s]

Available
also on AMD

Architectural Not supported
upper limit anymore on

leakage rate recent CPUs
38

Number of
Transient Loads

Transient Execution Capabilities

SMC can reach > 160 transient

160 1 CPU

140 | mmm intel core i7-10700k
120 1 == Intel Xeon Silver 4214
100 1 omm Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

] =R AMD Ryzen 5 5600X

0
0
0 .
0- gglgl)osvy;(zen Threadrippe
0
0

1 AMD Ryzen 7 2700X

r

=

/ loads in a single window —

Leakage Rate
[Mb/s]

o o N w H
b n L N L

/

Available
only on
Intel

Architectural Not supported
upper limit anymore on
leakage rate recent CPUs

FP has the best leakage rates Available
(>4Mb/s) thanks to its determinism also on AMD

(i.e. No mistraining needed)
38

Root-Cause Classification of Transient Execution

39

Root-Cause Classification of Transient Execution

BAD
SPECULATION
CONTROL - FLOW DATA
MISPREDICTION MISPREDICTION

(BRANCH MISPREDICTION) (MACHINE CLEAR)

Root-Cause Classification of Transient Execution

f

BAD

SPECULATION

CONTROL - FLOW
MISPREDICTION
(BRANCH MISPREDICTION)

Y
PREDICTORS

BHT
BTB
RSB

—

DATA
MISPREDICTION
(MACHINE CLEAR)

—

PREDICTORS

i

MD

39

Root-Cause Classification of Transient Execution

BAD
SPECULATION
CONTROL - FLOW DATA
MISPREDICTION MISPREDICTION
(BRANCH MISPREDICTION) (MACHINE CLEAR)

Y Vﬁ VK/

‘PREDICTORS“EXCEPTIONS‘ PREDICTORS

4

IBHT| | |NM| |DE| |up| |P|| [MD
BTB| ||Ac| |ss| [PF| [BR
RSB

U/S|R/W| P pKu
BIT|BIT|BIT

Root-Cause Classification of Transient Execution

—

BAD

SPECULATION

CONTROL - FLOW
MISPREDICTION

(BRANCH MISPREDICTION)

Y

—

DATA

MISPREDICTION
(MACHINE CLEAR)

F

PREDICTORS || EXCEPTIONS || PREDICTORS || LIKELY INVARIANTS
VIOLATIONS
Y Y l \ 4
BHT NM| |DE| [UD| |GP MD rpl Ismcl [xmel Mo
|BTB| |Ac||53||ﬂF|IBR‘ A/D || TSX |[MASKMOV
RSB BITS
U/S|R/W| P |PKU @ -
BIT|BIT|BIT

39

Root-Cause Classification of Transient Execution

BAD
SPECULATION
CONTROL - FLOW DATA
MISPREDICTION MISPREDICTION
(BRANCH MISPREDICTION) (MACHINE CLEAR)

Y Vﬁ (/\ ﬁv

PREDICTORS || EXCEPTIONS || PREDICTORS || LIKELY INVARIANTS || INTERRUPTS
VIOLATIONS
Y Y i Y Y
IBHT| | |NM| [DE| |uD| |GP|| |MD rpl [smel xmel Mo ::' ors
INTERRUPT
BTB| | |AC] |sS] |'1F| [BR| A/D || TSX |[MASKMOV
RSB ussrw] P Jpku "5 u]

BIT |BIT|BIT

Disclosure & Affected CPUs

We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021.

40

Disclosure & Affected CPUs

e We disclosed FPVI and SCSB to CPU, browser, OS,

and hypervisor vendors in February 2021. CPU Affected by SCSB Affected by FPVI
Vendor (CVE-2021-0089) (CVE-2021-0086)
(CVE-2021-26313) (CVE-2021-26314)

Intel V V
AMD v 4 vF
ARM X v **

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

40

Disclosure & Affected CPUs

We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021.

Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on

conditionally masking malicious NaN-boxed FP results
in Firefox 87.

CPU Affected by SCSB Affected by FPVI
(CVE-2021-0089) (CVE-2021-0086)
(CVE-2021-26313) (CVE-2021-26314)

Intel V V
AMD v 4 vF
ARM X v **

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

Vendor

40

Disclosure & Affected CPUs

We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021.

Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on

conditionally masking malicious NaN-boxed FP results
in Firefox 87.

Xen hypervisor mitigated SCSB and released a security
advisory (XSA-375) following our proposed mitigation.

CPU Affected by SCSB Affected by FPVI
(CVE-2021-0089) (CVE-2021-0086)
(CVE-2021-26313) (CVE-2021-26314)

Intel V V
AMD v 4 vF
ARM X v **

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

Vendor

40

Rage Against The Machine Clear

e Bad Speculation is not caused only by
classic mispredictions

Rage Against The Machine Clear

e Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,

i.e. Machine Clear.

Rage Against The Machine Clear

Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,

i.e. Machine Clear.

Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

Rage Against The Machine Clear

Bad Speculation is not caused only by
classic mispredictions, but also by
architectural invariants violations,

i.e. Machine Clear.

Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

Defenses must focus on the wider
class of root-causes of bad speculation.

Rage Against The Machine Clear

Bad Speculation is not caused only by

classic mispredictions, but also by
architectural invariants violations, :
i.e. Machine Clear. oN°

" @hanyrax @enrico_barberis

Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

https://www.vusec.net/projects/fpvi-scsb/

https://github.com/vusec/fpvi-scsb

Defenses must focus on the wider)
class of root-causes of bad speculation. http://download.vusec.net/papers/fpvi-scsb_sec21.pdf

https://www.vusec.net/projects/fpvi-scsb/
https://github.com/vusec/fpvi-scsb
http://download.vusec.net/papers/fpvi-scsb_sec21.pdf

