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The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

?

Bad Speculation
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Rage Against The Machine Clear

Self-Modifying Code 
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Floating-Point 
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End-to-end exploit 
leaking arbitrary 

memory in Firefox
With a leakage rate 

of 13 KB/s
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Security Analysis of Machine Clear
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SELF-MODIFYING CODE
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Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
Speculative Code Store Bypass
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Architectural Invariant
OoO execution always complies with TSO

Invariant Violation
Memory ordering model violation

Security Implications
Transiently leak stale data

Exploitation
Non-trivial due to strict 
synchronization requirements

Memory Ordering Machine Clear
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MACHINE CLEAR



Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with 
a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with 
a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with 
a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with 
a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with 
a value smaller than the smallest Normal number (i.e. 2^-1022)



Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with 
a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers



Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with 
a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations



Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with 
a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Security Implications
Transiently inject arbitrary FP values



Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with 
a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Security Implications
Transiently inject arbitrary FP values

Exploitation



21

FPVI EXPLOIT
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1. Attack Setup
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2. Finding Operands
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4. ASLR Bypass
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4. ASLR Bypass
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http://drive.google.com/file/d/1NdZqMVuVI-jtVwUn5VxQodGp6XKBTKB0/view
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Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s
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● Mitigations:

➔ Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

➔ We implemented a LLVM pass adding a serializing 

instruction in detected FPVI gadgets. 
With 53% geomean overhead for SPEC FP 2017.

➔ Use site-isolation or conditionally mask FP operations 

in the browsers.

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s
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Architectural Invariant
Stores followed by Loads are always 
disambiguated correctly

Invariant Violation
MDU misprediction

Security Implications
Transiently leak stale data

Exploitation
Spectre v4 (Speculative Store Bypass)

Memory Disambiguation Machine Clear



Other types of Machine Clear
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● AVX vmaskmov
● Exceptions
● Hardware interrupts
● Microcode assists
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RESULTS
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SMC can reach > 160 transient 
loads in a single window

FP has the best leakage rates 
(>4Mb/s) thanks to its determinism

(i.e. No mistraining needed)
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