
RAGE AGAINST THE MACHINE CLEAR

A Systematic Analysis of Machine
Clears and Their Implications for
Transient Execution Attacks

2
Vrije Universiteit Amsterdam

Hany
Ragab

Enrico
Barberis

Herbert
Bos

Cristiano
Giuffrida

1. Background

2. Machine Clears

3. Firefox Exploit

4. Results

3

Outline

4

Side Channels 101

4

Side Channels 101

5

Flush+Reload Attack

Cached
Not cached

array
[1]

array
[x+1]

Data cache
(shared resource)

array
[0]

...

Attacker Victim

array
[2]

array
[0]

...
array
[1]

t

5

Flush+Reload Attack

Cached
Not cached

array
[1]

array
[x+1]

Data cache
(shared resource)

array
[0]

...

Flush cache

Attacker Victim

array
[2]

array
[1]

t

if (crypto_key_bit[i] == 0):
x = array[0];

else:
x = array[1];

5

Flush+Reload Attack

Cached
Not cached

array
[1]

array
[x+1]

Data cache
(shared resource)

array
[0]

...

Flush cache

Attacker Victim

...

array
[2]

array
[1]

t

if (crypto_key_bit[i] == 0):
x = array[0];

else:
x = array[1];

5

Flush+Reload Attack

Cached
Not cached

array
[1]

array
[x+1]

Data cache
(shared resource)

array
[0]

...
array
[1]

Flush cache

Attacker Victim

...

array
[2]

t

if (crypto_key_bit[i] == 0):
x = array[0];

else:
x = array[1];

5

Flush+Reload Attack

Cached
Not cached

array
[1]

array
[x+1]

Data cache
(shared resource)

array
[0]

...
array
[1]

Flush cache

Attacker Victim

Reload cache

...

array
[2]

t

if (crypto_key_bit[i] == 0):
x = array[0];

else:
x = array[1];

5

Flush+Reload Attack

Cached
Not cached

array
[1]

array
[x+1]

Data cache
(shared resource)

array
[0]

...
array
[1]

Flush cache

Attacker Victim

Reload cache

...

array
[2]

t

if (crypto_key_bit[i] == 0):
x = array[0];

else:
x = array[1];

5

Flush+Reload Attack

Cached
Not cached

array
[1]

array
[x+1]

Data cache
(shared resource)

array
[0]

...
array
[1]

Flush cache

Attacker Victim

Reload cache

...

array
[2]

t

if (crypto_key_bit[i] == 0):
x = array[0];

else:
x = array[1];

5

Flush+Reload Attack

Cached
Not cached

array
[1]

array
[x+1]

Data cache
(shared resource)

array
[0]

...
array
[1]

Flush cache

Attacker Victim

Reload cache

...

array
[2]

t

if (x <) {
y = array[x]

}

array_size

6

array
[x]

array
[x+1]

Data cache
(shared resource)

array
[x-1]

......
Cached
Not cached

Transient ExecutionTransient Execution

if (x <) {
y = array[x]

}

array_size

6

array
[x]

array
[x+1]

Data cache
(shared resource)

array
[x-1]

......
Cached
Not cached

Transient ExecutionTransient Execution

if (x <) {
y = array[x]

}

array_size

6

array
[x+1]

Data cache
(shared resource)

array
[x-1]

......
array
[x]

Cached
Not cached

Transient ExecutionTransient Execution

if (x <) {
y = array[x]

}

array_size

6

array
[x+1]

Data cache
(shared resource)

array
[x-1]

......
array
[x]

Cached
Not cached

Transient ExecutionTransient Execution

if (x <) {
y = array[x]

}

array_size

6

array
[x+1]

Data cache
(shared resource)

array
[x-1]

......
array
[x]

Cached
Not cached

Transient ExecutionTransient Execution

8

2017 2018 2019 2020 2021

Spectre v5
(RSB)

L1
Terminal

Fault Load Value
Injection

(LVI)

Snoop

CrossTalk
(SRBDS)

Spectre

V1
Branch
History
Table

V2
Branch
Target
Buffer

V4
Speculative

Store
Bypass

Meltdown

V3

Vector
Register

Microarchitectural
Data Sampling

(MDS)

Fill
Buffer

Store
Buffer

L1
Data

Eviction
Load
Port

Transaction
Asynchronous

Abort

Transient Execution Attacks

8

2017 2018 2019 2020 2021

Spectre v5
(RSB)

L1
Terminal

Fault Load Value
Injection

(LVI)

Snoop

CrossTalk
(SRBDS)

Spectre

V1
Branch
History
Table

V2
Branch
Target
Buffer

V4
Speculative

Store
Bypass

Meltdown

V3

Vector
Register

Microarchitectural
Data Sampling

(MDS)

Fill
Buffer

Store
Buffer

L1
Data

Eviction
Load
Port

Transaction
Asynchronous

Abort

Machine Clear

Floating-Point
Value

Injection
Speculative Code

Store
Bypass

Transient Execution Attacks

9

The root cause of discarding issued µOps on x86 processors

Bad Speculation

9

The root cause of discarding issued µOps on x86 processors

Branch Misprediction

Bad Speculation

9

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

Bad Speculation

9

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

Bad Speculation

9

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

Bad Speculation

& Faults & Intel TSX

9

The root cause of discarding issued µOps on x86 processors

Branch Misprediction Machine Clear

?

Bad Speculation

& Faults & Intel TSX

404 LOGO NOT FOUND

10

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

Memory Ordering
Machine Clear

Memory Disambiguation
Machine Clear

10

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

10

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

Speculative Code
Store Bypass

(SCSB)
Negligible mitigation

overhead

10

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

Speculative Code
Store Bypass

(SCSB)

Floating-Point
Value Injection

(FPVI)
Negligible mitigation

overhead
53% Mitigation

overhead

10

Rage Against The Machine Clear

Self-Modifying Code
Machine Clear

Floating-Point
Machine Clear

End-to-end exploit
leaking arbitrary

memory in Firefox
With a leakage rate

of 13 KB/s

1. Architectural Invariant

2. Invariant Violation

3. Security Implications

4. Exploitation

11

Security Analysis of Machine Clear

12

SELF-MODIFYING CODE
MACHINE CLEAR

Self-Modifying Code Machine Clear

13

Self-Modifying Code Machine Clear

13

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

13

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

13

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

13

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

13

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Self-Modifying Code Machine Clear

13

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Self-Modifying Code Machine Clear

13

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation
Self-Modifying Code

Self-Modifying Code Machine Clear

13

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Self-Modifying Code Machine Clear

13

Self-Modifying Code is a program storing instructions as
data, modifying its own code as it is being executed

Architectural Invariant
Stores always target data

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
?

Speculative Code Store Bypass (SCSB)

14

Speculative Code Store Bypass (SCSB)

14

Speculative Code Store Bypass (SCSB)

14

Speculative Code Store Bypass (SCSB)

14

Speculative Code Store Bypass (SCSB)

14

8.1.3 Handling Self- and Cross-Modifying Code

Speculative Code Store Bypass (SCSB)

14

8.1.3 Handling Self- and Cross-Modifying Code

Speculative Code Store Bypass (SCSB)

14

8.1.3 Handling Self- and Cross-Modifying Code

Speculative Code Store Bypass (SCSB)

14

8.1.3 Handling Self- and Cross-Modifying Code

Speculative Code Store Bypass (SCSB)

14

Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
Speculative Code Store Bypass

15

MEMORY ORDERING
MACHINE CLEAR

Memory Ordering Machine Clear

16

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

Memory Ordering Machine Clear

16

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

Memory Ordering Machine Clear

16

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

Memory Ordering Machine Clear

16

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

Ready-to-commit
Waiting for r1=[x]
to reflect the TSO

Memory Ordering Machine Clear

16

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

Ready-to-commit
Waiting for r1=[x]
to reflect the TSO

Memory Ordering Machine Clear

16

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

17

Architectural Invariant
OoO execution always complies with TSO

Invariant Violation
Memory ordering model violation

Security Implications
Transiently leak stale data

Exploitation
Non-trivial due to strict
synchronization requirements

Memory Ordering Machine Clear

18

FLOATING-POINT
MACHINE CLEAR

Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2^-1022)

Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Security Implications
Transiently inject arbitrary FP values

Floating-Point Machine Clear

19

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2^-1022)

Architectural Invariant
FPU always operates on

normal numbers

Invariant Violation
Subnormal FP operations

Security Implications
Transiently inject arbitrary FP values

Exploitation

21

FPVI EXPLOIT

22

1. Attack Setup

24

2. Finding Operands

24

2. Finding Operands

25

3. Memory Leak

25

3. Memory Leak

25

3. Memory Leak

25

3. Memory Leak

26

4. ASLR Bypass

26

4. ASLR Bypass

27

http://drive.google.com/file/d/1NdZqMVuVI-jtVwUn5VxQodGp6XKBTKB0/view

31

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s

31

● Mitigations:

➔ Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

➔ We implemented a LLVM pass adding a serializing

instruction in detected FPVI gadgets.
With 53% geomean overhead for SPEC FP 2017.

➔ Use site-isolation or conditionally mask FP operations

in the browsers.

Floating-Point Value Injection (FPVI)

● Exploit leakage rate of 13 KB/s

32

MEMORY
DISAMBIGUATION
MACHINE CLEAR

Memory Disambiguation Machine Clear

33

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on

the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

Memory Disambiguation Machine Clear

33

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on

the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

Memory Disambiguation Machine Clear

33

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on

the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

CPU: Are these the same
address?

Memory Disambiguation Machine Clear

33

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on

the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

CPU: Are these the same
address?

MDU: I predict they’re not
the same (i.e. No-Alias)

Memory Disambiguation Machine Clear

33

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on

the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

CPU: Are these the same
address?

MDU: I predict they’re not
the same (i.e. No-Alias)

CPU: OK, I will not wait to resolve 0xXXXX,
Load Out-of-Order 0x1234 (i.e. “Secret”)

Memory Disambiguation Machine Clear

33

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on

the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

CPU: Are these the same
address?

MDU: I predict they’re not
the same (i.e. No-Alias)

CPU: OK, I will not wait to resolve 0xXXXX,
Load Out-of-Order 0x1234 (i.e. “Secret”)

34

Architectural Invariant
Stores followed by Loads are always
disambiguated correctly

Invariant Violation
MDU misprediction

Security Implications
Transiently leak stale data

Exploitation
Spectre v4 (Speculative Store Bypass)

Memory Disambiguation Machine Clear

Other types of Machine Clear

35

● AVX vmaskmov
● Exceptions
● Hardware interrupts
● Microcode assists

36

RESULTS

37

Let’s zoom out a bit ...

37

Let’s zoom out a bit ...

Self-Modifying Code

37

Let’s zoom out a bit ...

Self-Modifying Code

Memory Ordering

37

Let’s zoom out a bit ...

Self-Modifying Code Floating-Point

Memory Ordering

37

Let’s zoom out a bit ...

Self-Modifying Code Floating-Point

Memory Ordering Memory Disambiguation

Transient Execution Capabilities

38

Transient Execution Capabilities

38

Architectural
upper limit

leakage rate

Transient Execution Capabilities

38

Architectural
upper limit

leakage rate

Transient Execution Capabilities

38

Available
only on

Intel

Architectural
upper limit

leakage rate

Transient Execution Capabilities

38

Not supported
anymore on
recent CPUs

Available
only on

Intel

Architectural
upper limit

leakage rate

Transient Execution Capabilities

38

Not supported
anymore on
recent CPUs

Available
only on

Intel

Available
also on AMD

Architectural
upper limit

leakage rate

Transient Execution Capabilities

38

SMC can reach > 160 transient
loads in a single window

Not supported
anymore on
recent CPUs

Available
only on

Intel

Available
also on AMD

Architectural
upper limit

leakage rate

Transient Execution Capabilities

38

SMC can reach > 160 transient
loads in a single window

FP has the best leakage rates
(>4Mb/s) thanks to its determinism

(i.e. No mistraining needed)

Not supported
anymore on
recent CPUs

Available
only on

Intel

Available
also on AMD

Architectural
upper limit

leakage rate

Root-Cause Classification of Transient Execution

39

Root-Cause Classification of Transient Execution

39

Root-Cause Classification of Transient Execution

39

Root-Cause Classification of Transient Execution

39

Root-Cause Classification of Transient Execution

39

Root-Cause Classification of Transient Execution

39

Disclosure & Affected CPUs

40

● We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021.

Disclosure & Affected CPUs

40

● We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021. CPU

Vendor

Affected by SCSB
(CVE-2021-0089)

(CVE-2021-26313)

Affected by FPVI
(CVE-2021-0086)

(CVE-2021-26314)

Intel ✔ ✔

AMD ✔ ✔*

ARM ✘ ✔**

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

Disclosure & Affected CPUs

40

● We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021.

● Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on
conditionally masking malicious NaN-boxed FP results
in Firefox 87.

CPU
Vendor

Affected by SCSB
(CVE-2021-0089)

(CVE-2021-26313)

Affected by FPVI
(CVE-2021-0086)

(CVE-2021-26314)

Intel ✔ ✔

AMD ✔ ✔*

ARM ✘ ✔**

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

Disclosure & Affected CPUs

40

● We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021.

● Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on
conditionally masking malicious NaN-boxed FP results
in Firefox 87.

● Xen hypervisor mitigated SCSB and released a security
advisory (XSA-375) following our proposed mitigation.

CPU
Vendor

Affected by SCSB
(CVE-2021-0089)

(CVE-2021-26313)

Affected by FPVI
(CVE-2021-0086)

(CVE-2021-26314)

Intel ✔ ✔

AMD ✔ ✔*

ARM ✘ ✔**

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions , but also by
architectural invariants violations,
i.e. Machine Clear.

● Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions , but also by
architectural invariants violations,
i.e. Machine Clear.

● Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions

● Defenses must focus on the wider
class of root-causes of bad speculation.

, but also by
architectural invariants violations,
i.e. Machine Clear.

● Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

@hanyrax @enrico_barberis

Rage Against The Machine Clear

● Bad Speculation is not caused only by
classic mispredictions

● Defenses must focus on the wider
class of root-causes of bad speculation.

, but also by
architectural invariants violations,
i.e. Machine Clear.

https://www.vusec.net/projects/fpvi-scsb/

https://github.com/vusec/fpvi-scsb

http://download.vusec.net/papers/fpvi-scsb_sec21.pdf

https://www.vusec.net/projects/fpvi-scsb/
https://github.com/vusec/fpvi-scsb
http://download.vusec.net/papers/fpvi-scsb_sec21.pdf

