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News > World > Europe

Melting snow being used by police to
find cannabis farms in the
Netherlands

Snow-free roofs can indicate the high temperatures needed to grow the drug

Lizzie Dearden | Tuesday 10 February 2015 13:31 | comments @ o o @
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Rage Against The Machine Clear

Self-Modifying Code Floating-Point
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Security Analysis of Machine Clear
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4. Exploitation
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Speculative Code Store Bypass (SCSB)
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Speculative Code Store Bypass (SCSB)
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Speculative Code Store Bypass (SCSB)

Listing 2 Chromium instruction cache flush
(chromium/src/v8/src/codegen/x64/cpu-x64.cc)

void CpuFeatures::FlushICache (void* start, size_t size) {

he on Intel x/ ...}

Listing 3 Firefox  instruction cache flush
(mozilla-unified/js/src/jit/FlushICache.h)

inline wvoid FlushICache (wvoid* code, size_t size,
bool codelsThreadLocal = true) {

PN ind xé64. */ '}

14



Speculative Code Store Bypass (SCSB)

Architectural Invariant
Stores always target data memory

Invariant Violation
Self-Modifying Code

Security Implications
Transiently execute stale code

Exploitation
Speculative Code Store Bypass
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Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

16



Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @

PROCESSOR A PROCESSOR B
rl = [X] (slow) | [X] =1
r2 = [Y] (fast) | [Y]1 =1
r3 = f(r2)

16



Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @
PROCESSOR MEMORY PROCESSOR
A B

PROCESSOR A PROCESSOR B SUBSYSTEM

rl = [X] (slow) || [X] =1

r2 = [Y] (fast)| [Y]1 =1

r3 = £(r2) issue rl = [X] \
Cache MISS!

issue r2 = [Y] K
T Cache HIT!
/,\:11,_,_’—’—
r2 =0 |d

issue r3 = f(r2)

16



Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @
PROCESSOR MEMORY PROCESSOR
A B

PROCESSOR A PROCESSOR B SUBSYSTEM

rl = [X] (slow) || [X] =1

r2 = [Y] (fast)| [Y]1 =1

r3 = £(r2) issue rl = [X] \
Cache MISS!

issue r2 = [Y] K
\]L Cache HIT!
to- ; L
Ready-to-commit /v 2 =0 ‘/

Waiting for r1=[x]
to reflect the TSO issue r3 = £(r2)

16



Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @
PROCESSOR MEMORY PROCESSOR
A B

PROCESSOR A PROCESSOR B SUBSYSTEM

rl = [X] (slow) || [X] =1

r2 = [Y] (fast)| [Y]1 =1

r3 £(r2) issue rl1 = [X] \—.
Cache MISS!

issue r2 [Y]H
\]> Cache HIT!
-to- ; L
Ready-to-commit /v r2 =0 4/

Waiting for r1=[x]

to reflect the TSO issue r3 = £(x2) K’E’S_—L’L\L]”"
rl =1

1
1

issue [X]
issue [Y]

16



Memory Ordering Machine Clear

A Total Store Order memory model guarantees that all CPU cores see all memory operations as the program order,
except one case: A store instruction followed by a load instruction operating on different addresses may be reordered

X & Y are initially @

PROCESSOR A
rl = [X] (slow)

r2 = [Y] (fast)
r3 = f(r2)

PROCESSOR B
[X]=1
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Memory Ordering Machine Clear

Architectural Invariant
000 execution always complies with TSO

Invariant Violation
Memory ordering model violation

Security Implications
Transiently leak stale data

Exploitation
Non-trivial due to strict
synchronization requirements
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Floating-Point Machine Clear

Subnormal/Denormal numbers are a special range of floating-point numbers with
a value smaller than the smallest Normal number (i.e. 2*-1022)
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1. Attack Setup

@ FPVI Exploit
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2. Finding Operands

enrico@i9-9900K: find operands$ ./find operands| Oxdeadbeef000
Finding X,Y for target 0x00000deadbeef000

X = OxbffbOdeadbeef00/ -1.69089/807/2306127e+00
Y = 0x0000000000000001 4.9406564584124654e-324
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2. Finding Operands

enrico@i9-9900K: find operands$ ./find operands| Oxdeadbeef000
Finding X,Y for target 0x00000deadbeef000

X = OxbffbOdeadbeef00/ -1.690897/8072306127e+00

Y Ox0000000000000001 4.9406564584124654e-324

enrico@i9-9900K:test operands$ ./test operands OxbffbOdeadbeef007 LOx0000000000000001

OxbffbOdeadbeef007 -1.690898e+00
Ox0000000000000001 4.940656e-324
AxfffAAAAAAANAAANANA -inf
OxfffbOdeadbeef0OO -nan

X
y
arch_res
trans res

24



3. Memory Leak

Ox£££fbOdeadbeecf00
JSVAL_TYPE_STRING
PAYLOAD:
Oxdeadbeef000
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3. Memory Leak

Ox£££fbOdeadbeecf00
JSVAL_TYPE_STRING
PAYLOAD:
Oxdeadbeef000

~N

//X = BxclBBe8b2c9755600

//y = 0x0004000000000000

z = X/y

if (typeof z === "string") {
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3. Memory Leak

Ox£££fbOdeadbeecf00
JSVAL_TYPE_STRING
PAYLOAD:
Oxdeadbeef000

Ox£££0000000000000
JSVAL_TYPE_DOUBLE

PAYLOAD:
-Infinity

z = X/y

J

//X = 0xcBBBe8b2c9755600
//y = 0x0004000000000000

if (typeof z === "string") {
+» //z = OxfffbOdeadbeefddd

\‘i‘ else {
return z //z=-Infinity
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3. Memory Leak

Ox££fbOdeadbeef000 | OxEE£0000000000000
JSVAL_TYPE_STRING | JSVAL_TYPE_DOUBLE

PAYLOAD: PAYLOAD:
Oxdeadbeef000 -Infinity

//X = 0xcBBBe8b2c9755600
//y = 0x0004000000000000
z = X/y
if (typeof z === "string") {
//z = Oxfffb0deadbeefdBd
//Lleak byte @ Oxde ef004
return buf[(z.length&Oxff)<<10]
} else {
return z //z=-Infinity

b
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4. ASLR Bypass

OxXFFFF....
(_
Firefox
Process
\—
0x0000....

Secret

Attacker
Spray
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4. ASLR Bypass

OxFFFF....
[
Firefox
Process
_
0x0000....

Secret

Attacker
Spray
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http://drive.google.com/file/d/1NdZqMVuVI-jtVwUn5VxQodGp6XKBTKB0/view

Floating-Point Value Injection (FPVI)

Exploit leakage rate of 13 KB/s

Wait!!!
Z is not

represented
[ | comectty
Too late

Machine Clear _

FP Denormal Detection
Transiently Done

te

t1

t2

t3
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Floating-Point Value Injection (FPVI)

Exploit leakage rate of 13 KB/s
Mitigations:

= Flush To Zero (FTZ) & Denormal Are Zero (DAZ)

- We implemented a LLVM pass adding a serializing

instruction in detected FPVI gadgets.
With 53% geomean overhead for SPEC FP 2017.

- Use site-isolation or conditionally mask FP operations

in the browsers.

CPU

FPU

Too late ...
Machine Clear

Wait!!!
Z is not
represented
correctly

Z=X/Y

Check 2

I -

z

FP Denormal Detection
Transiently Done

te

t1

t2

t3

31



MEMORY
DISAMBIGUATION
MACHINE CLEAR



Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).
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Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet
Px1234 contains "Secret"

Store "Hello" to OxXXXX
Load from Ox1234
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When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet CPU: Are these the same
Ox1234 contains "Secret" address?

Store "Hello" to |[OxXXXX
Load from Ox1234
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Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet CPU: Are these the same
Ox1234 contains "Secret" address?

MDU: | predict they’re not
L the same (i.e. No-Alias)

Store "Hello" to |[OxXXXX
Load from Ox1234
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Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet CPU: Are these the same
Ox1234 contains "Secret" address?

MDU: | predict they’re not
Store "Hello" to GXXXXX.‘ the same (i.e. No-Alias)

Load from Ox1234 CPU: OK, I will not wait to resolve 0xXXXX,
Load Out-of-Order 0x1234 (i.e. “Secret”)
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Memory Disambiguation Machine Clear

When a load instruction is following a store instruction which destination address is not ready
yet, the Memory Disambiguation Unit predicts whether the two instructions are operating on
the same memory addresses (i.e. Alias) or not (i.e. No-Alias).

OxXXXX not ready yet CPU: Are these the same
@x1234 contains "Secret" address?
MDU: | predict they’re not
1] "
Load from 0x1234 CPU: OK, I will not wait to resolve OxXXXXX,
Load Out-of-Order 0x1234 (i.e. “Secret”)

Memory Disambiguation
Misprediction Detection
Transiently Done

33



Memory Disambiguation Machine Clear

Architectural Invariant
Stores followed by Loads are always
disambiguated correctly

Invariant Violation
MDU misprediction

Security Implications
Transiently leak stale data

Exploitation
Spectre v4 (Speculative Store Bypass)

34



Other types of Machine Clear

AVX vmaskmov
Exceptions
Hardware interrupts
Microcode assists

35



RESULTS



Let's zoom out a bit ...
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Let's zoom out a bit ...

Self-Modifying Code

il: ...
i2: store nop @ i3

i3: load secret

Machine Clear Detection

Transiently Done
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Let's zoom out a bit ...

Self-Modifying Code

il:
i2: store nop @ i3

i3: load secret

Machine Clear Detection

Transiently Done

PROCESSOR A PROCESSOR B

rl = [X] (slow) [X] =1
r2 = [Y] (fast) [Y] =1
r3 = f(r2)

Memory Ordering
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Let's zoom out a bit ...

Self-Modifying Code

il:
i2: store nop @ i3

i3: load secret

Machine Clear Detection

Floating-Point

il: Z
i2: Z
i3:

X/7Y
Z +1

Transiently Done

PROCESSOR A PROCESSOR B

rl = [X] (slow) [X] =1
r2 = [Y] (fast) [Y] =1
r3 = £(x2)

Memory Ordering
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Let's zoom out a bit ...

Self-Modifying Code Floating-Point

il: ... il: Z2 =X/ Y
i2: store nop @ i3 i2: 2 =2 + 1

i3: load secret i3:
Machine Clear Detection
Transiently Done
PROCESSOR A PROCESSOR B i1: store "Hello" to @xXXXX
rl = [X] (slow) [X] =1
r2 = [Y] (fast) [Y] =1 i2: load from Ox1234
r3 = £(x2)

Memory Ordering Memory Disambiguation
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Number of
Transient Loads

Leakage Rate
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Transient Execution Capabilities

| AMD Ryzen 7 2700X

CPU

| == Intel Core i7-10700K
7 EE=8 Intel Xeon Silver 4214
1 OID Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

4 B AMD Ryzen 5 5600X

AMD Ryzen Threadripper
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FAULT SMC XMC
Transient Execution Management
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Transient Loads

Transient Execution Capabilities

1601 CPU

140 | mmm intel Core i7-10700k
120 1 == Intel Xeon Silver 4214
100 1 mmm Intel Core i9-9900K
80 1 E=3 Intel Core i7-7700K
60 | == AMD Ryzen 5 5600X

401 == AMD Ryzen Threadripper
s 2990wXx

20 1 AMD Ryzen 7 2700X

/

Leakage Rate

T, | - IEJ

Available
only on
Intel

FAULT SMC XMC
Jransient Execution Management

Architectural Not supported
upper limit anymore on
leakage rate  recent CPUs

38



Number of

Transient Execution Capabilities

o 1601 CPU
T 140 | mmm intel Core i7-10700K
9 120 1 =3 intel Xeon Silver 4214
= 100 mm intel Core i9-9900K
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& = Intel
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|\ Jransient Executlon Management J
Architectural Not supported Available
upper limit anymore on also on AMD

leakage rate  recent CPUs
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Transient Execution Capabilities

SMC can reach > 160 transient
,/ loads in a single window o
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Number of
Transient Loads

Transient Execution Capabilities

SMC can reach > 160 transient

160 1 CPU

140 | mmm intel core i7-10700k
120 1 == Intel Xeon Silver 4214
100 1 omm Intel Core i9-9900K

4 E=3 Intel Core i7-7700K

] =R AMD Ryzen 5 5600X

0
0
0 .
0- gglgl)osvy;(zen Threadrippe
0
0

1 AMD Ryzen 7 2700X

r

=

/ loads in a single window —

Leakage Rate
[Mb/s]

o o N w H
b n L N L

/

Available
only on
Intel

Architectural Not supported
upper limit anymore on
leakage rate  recent CPUs

FP has the best leakage rates Available
(>4Mb/s) thanks to its determinism also on AMD

(i.e. No mistraining needed)
38



Root-Cause Classification of Transient Execution
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Root-Cause Classification of Transient Execution

f

BAD

SPECULATION

CONTROL - FLOW
MISPREDICTION
(BRANCH MISPREDICTION)

Y
PREDICTORS

BHT
BTB
RSB

—

DATA
MISPREDICTION
(MACHINE CLEAR)

—

PREDICTORS

i

MD
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Root-Cause Classification of Transient Execution

BAD
SPECULATION
CONTROL - FLOW DATA
MISPREDICTION MISPREDICTION
(BRANCH MISPREDICTION) (MACHINE CLEAR)

Y Vﬁ VK/

‘PREDICTORS“EXCEPTIONS‘ PREDICTORS

4

IBHT| | |NM| |DE| |up| |P|| [MD
BTB| ||Ac| |ss| [PF| [BR
RSB

U/S|R/W| P pKu
BIT|BIT|BIT




Root-Cause Classification of Transient Execution

—

BAD

SPECULATION

CONTROL - FLOW
MISPREDICTION

(BRANCH MISPREDICTION)

Y

—

DATA

MISPREDICTION
(MACHINE CLEAR)

F

PREDICTORS || EXCEPTIONS || PREDICTORS || LIKELY INVARIANTS
VIOLATIONS
Y Y l \ 4
BHT NM| |DE| [UD| |GP MD rpl Ismcl [xmel Mo
|BTB| |Ac||53||ﬂF|IBR‘ A/D || TSX |[MASKMOV
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Root-Cause Classification of Transient Execution

BAD
SPECULATION
CONTROL - FLOW DATA
MISPREDICTION MISPREDICTION
(BRANCH MISPREDICTION) (MACHINE CLEAR)

Y Vﬁ (/\ ﬁv

PREDICTORS || EXCEPTIONS || PREDICTORS || LIKELY INVARIANTS || INTERRUPTS
VIOLATIONS
Y Y i Y Y
IBHT| | |NM| [DE| |uD| |GP|| |MD rpl [smel xmel Mo ::' ors
INTERRUPT
BTB| | |AC] |sS] |'1F| [BR| A/D || TSX |[MASKMOV
RSB ussrw] P Jpku "5 u]

BIT |BIT|BIT




Disclosure & Affected CPUs

We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021.
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Disclosure & Affected CPUs

e We disclosed FPVI and SCSB to CPU, browser, OS,

and hypervisor vendors in February 2021. CPU Affected by SCSB Affected by FPVI
Vendor (CVE-2021-0089) (CVE-2021-0086)
(CVE-2021-26313) (CVE-2021-26314)

Intel V V
AMD v 4 vF
ARM X v **

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI
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Disclosure & Affected CPUs

We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021.

Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on

conditionally masking malicious NaN-boxed FP results
in Firefox 87.
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Disclosure & Affected CPUs

We disclosed FPVI and SCSB to CPU, browser, OS,
and hypervisor vendors in February 2021.

Mozilla confirmed the FPVI vulnerability (CVE-2021-
29955) and deployed a mitigation based on

conditionally masking malicious NaN-boxed FP results
in Firefox 87.

Xen hypervisor mitigated SCSB and released a security
advisory (XSA-375) following our proposed mitigation.

CPU Affected by SCSB Affected by FPVI
(CVE-2021-0089) (CVE-2021-0086)
(CVE-2021-26313) (CVE-2021-26314)

Intel V V
AMD v 4 vF
ARM X v **

* No exploitable NaN-boxed transient results were found
** ARM reported that some FPU implementations are
affected by FPVI

Vendor
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Rage Against The Machine Clear

Bad Speculation is not caused only by

classic mispredictions, but also by
architectural invariants violations, :
i.e. Machine Clear. oN°

" @hanyrax @enrico_barberis

Architectural invariants can be
exploited, creating new security threats,
e.g. FPVI & SCSB

https://www.vusec.net/projects/fpvi-scsb/

https://github.com/vusec/fpvi-scsb

Defenses must focus on the wider )
class of root-causes of bad speculation. http://download.vusec.net/papers/fpvi-scsb_sec21.pdf



https://www.vusec.net/projects/fpvi-scsb/
https://github.com/vusec/fpvi-scsb
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