
M0LECON	2021

Hacking Hardware Devices

Antonio Varriale
Blu5 Group

M0LECON	2021

Blu5 Group

M0LECON	2021

SEcube™

The first Open Security Platform in a Single Chip

M0LECON	2021

mSE™

The first micro SD card with a
Secure Environment onboard

M0LECON	2021

A myriad of micro devices are coming

But don't expect the same OS that you find on mobile devices,
PCs and servers.

✓ 6LoWPAN, IPv6, RPL, UDP, TCP, QUIC

✓ MQTT-SN, CoAP, and CBOR

✓ BLE, LoRaWAN, 802.15.4, WLAN, CAN

✓ LwM2M client integration

✓ Static and dynamic memory allocation

✓ High resolution and long-term timers

✓ Tools and utilities (System shell, Crypto
primitives, ...)

✓ Automated testing on various
embedded hardware in the loop

✓ Code once, run on 8-bit (e.g., Arduino
Mega 2560), 16-bit (e.g., MSP430), and
32-bit platforms

✓ Robust runtime system

✓ Modular for flexible code-footprint

✓ Fosters energy-efficiency

✓ Real-time capable by limiting interrupt
latency (~50 clock cycles) and priority-
based scheduling

✓ Multi-threading with ultra-low overhead
(<25 bytes per thread)

M0LECON	2021

Is you hardware target
using Secure Programming Strategies?

YES

Ready for
DEFENCE

NO

Ready for
ATTACK

M0LECON	2021

Hardware Features & Tools

M0LECON	2021

Most Wanted Features for Performance/Security

✓ Full integration on single die
(core, flash, sram, EEPROM)

✓ High Performances

✓ Floating Point

✓ DSP Libraries

✓ Low power consumption

✓ Dynamic Power scaling (100uA/MHz)

✓ HW Crypto Accelerators

✓ True Random Noise Generator

✓ Debug Lock

✓ Integrity and Tamper Protection

✓ Memory Protection Unit

✓ In-line Firmware Update (memory segmentation, flash technology)

M0LECON	2021

Focus on Security Requirements

✓ Protection from Software Attacks
• Firmware Corruption (Buffer overflows, stack corruptions, …)

• Untrusted firmware update

• Debug activation

• Wrong execution, denial of service

✓ Protection from Hardware Attacks
• Fault injection by physical attacks on the system, external to package

• Out of range usage

• Glitch on supplies or clocks

• Radiation exposure

• Side channel attacks: spy product to get secrets (power supply, electromagnetic
radiations, …)

• Internal fault injection after decapsulation (Force nodes by probing, laser beam, …)

• Reverse engineering (code/data extraction)

• Circuit modification (fib: focused ion beam, …)

M0LECON	2021

• Core: ARM 32-bit CortexTM-M4 CPU with FPU
• Adaptive real-time accelerator (ART AcceleratorTM) allowing 0-

wait state execution from Flash memory
• frequency up to 168 MHz, memory protection unit, 210 DMIPS/

1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions
• Memories

– Up to 1 Mbyte of Flash memory
–Up to 192+4 Kbytes of SRAM including 64-Kbyte of CCM (core

coupled memory) dataRAM
• Clock, reset and supply management
• 4-to-26 MHz crystal oscillator

– Internal 16 MHz factory-trimmed RC (1% accuracy)
– Internal 32 kHz RC with calibration

• Low power
– Sleep, Stop and Standby modes

• Debug mode
– Serial wire debug (SWD) & JTAG interfaces
– Cortex-M4 Embedded Trace MacrocellTM • Up to 140 I/O ports
with interrupt capability

• Up to 138 5 V-tolerant I/Os
• Up to 15 communication interfaces
• Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO
• 8- to 14-bit parallel camera interface up to 54 Mbytes/s
• True random number generator

Example: STM32F4x Main Technical Specs

http://www.keil.com/pack/doc/CMSIS/DSP/html/index.html

CMSIS-DSP

M0LECON	2021

Cortex-M4 CMSIS-DSP

M0LECON	2021

Code Example: FIR

y
32

[n] = ∑ x
16

[n-1] * c
16

[i]
i=1

N

M0LECON	2021

Low Power Modes

The ST32F4xx features 3 low power modes
• SLEEP, core stopped, peripheral running (2mA @ 2 MHz, 38mA @ 120MHz)
• STOP, clocks stopped, RAM, registers kept (1mA)
• STANBY, only backup domain kept, return via RESET (150uA)

M0LECON	2021

Privilege Levels: Privileged & Unprivileged

✓ Privileged/System Level
• The software can use all the instructions and has access to all resources
• Privileged software executes at the privileged level

✓ Unprivileged/User Level
• The software has limited access to the MSR and MRS instructions (copy

immediate values from/to Processor Status Register) and cannot use the CPS
(Change Processor Status) instruction

• The software cannot access the system timer, NVIC or system control block
• might have restricted access to memory or peripherals (Through MPU)

M0LECON	2021

Modes: Threads & Interrupts

✓ Thread Mode
• Used to execute application Software
• The processor enters Thread mode when it comes out of reset
• Thread mode can be both Privileged and Unprivileged

✓ Handle Mode
• Used to handle exceptions
• The processor returns to Thread mode when it has finished exception

processing
• Handle mode is always Privileged

M0LECON	2021

Execution State Diagram

PrivilegedReset

Thread Mode

Privileged

Handle Mode

Unprivileged

Exception Entry

Exception Exit

Exception Entry

Exception Exit
Control
Register

Transition

M0LECON	2021

Memory Protection Unit

The Memory Protection Unit (MPU) divides the memory map into a number of
regions and defines the location, size, access permission and memory attributes
of each region, supporting:
• Independent attribute settings for each region
• Overlapping regions
• Export of memory attributes to the system

The Memory attributes affect behaviour of memory access to the region
• Eight separate memory regions, 0-7
• background region (default)

The MPU register can be set in privileged level only

M0LECON	2021

Readout/JTAG Protection

Level 1
RDP != 0xCC
RDP != 0xAA

Level 2
RDP = 0xCC

Level 0
RDP = 0xAA

Readout protection
• BLOCKED access to memory from

SRAM, system memory and JTAG
• Remove readout protection possible

after full erase of the memory and its
blank verification

JTAG Fuse
• No Un-Protecting possible
• JTAG disable
• System Memory disable
• User settings protected

Un-Protected
• No readout protection
• Full access to memory from SRAM,

system memory and JTAG

M0LECON	2021

True Random Noise Generator Features

✓ 32-bit Random Numbers, produced by an analog generator Generator

✓ Clocked by a dedicated clock (PLL48CLK)

✓ 40 periods of the PLL48CLK clock signal between two consecutive random
numbers

✓ FIPS 140-2 compliant

✓ Hardware runtime check

✓ 5 flags (1 x valid data ready, 2 x abnormal sequence, 2 x frequency error)

✓ 1 Interrupt (abnormal sequence or frequency error)

M0LECON	2021

True Random Noise Generator Block Diagram

M0LECON	2021

Integrity and Tamper Protection

Integrity & Safety

✓ CRC Calculation Unit
✓ Power Supply Integrity Monitoring
✓ Clock Security System
✓ Error Correction Code
✓ Parity Check
✓ Temperature Sensor

Tamper Protection

✓ Backup Domain
✓ RTC (alarm timestamp)
✓ RTC Register protection
✓ Backup Registers
✓ GPIO Configuration Locking
✓ Watchdogs

M0LECON	2021

In-line firmware update

It is possible thanks to the permanent memory segmentation
and to the use of modern flash technology instead of EEPROM

Example

1 0 1 1 0 1 0 0 0 1Current Value:

Written Value:

Actual Value:

0 0 0 1 1 1 0 1 1 1

0 0 0 1 0 1 0 0 0 1

Flash Behaviour

Set 1 to 0
The single bit can be modified

Set 0 to 1
The whole sector must be
modified

M0LECON	2021

Development Tool

Keil™ Development Tool is an ARM® product which includes
– C/C++ Compiler,
– Debugger,
– Integrated Environment,
– Simulation Models,
– Libraries,
– Debug and Trace adapters

M0LECON	2021

Secure Programming Strategies

M0LECON	2021

Secure Programming Strategies

✓ Chained Security

✓ All Secrets encrypted by Primary Keys

✓ Primary Keys Encrypted by Master Keys

✓ Master Keys decrypted/derived by after successful login

✓ Multi-Layer Security (e.g. Factory/OEM/user, etc.)

✓ Roles separation

✓ Keys separation

✓ Memory Protection Unit

✓ Privileged/Unprivileged execution

✓ Software Interrupt Calls

M0LECON	2021

Chained Security

✓ No clear MASTER KEYS stored in the CPU FLASH

✓ Even if it is not accessible via JTAG!

✓ No clear Login Password stored in the CPU FLASH

✓ Even if it is not accessible via JTAG!

✓ Secrets available only in MPU protected RAM areas after successful login

Protect
Login

Channel

Send/Verify
Login

Password

Derive
Master Keys

– At least a Secondary
pwd must be used

– Secondary Pwd must be
updated

– Secondary Pwd is
expendable

– Channel protected (e.g.
with ECDH + Secondary
Password)

Decrypt
Primary

Keys

– Login Password
must be updated

– Login Password is
not sent in clear
on the channel

– Login Password is
not stored in the
CPU Flash

– Use Login Password
and Secondary
Password to Derive
Master Keys

– Master Keys are not
stored in the CPU
Flash

– Master Keys are used
to decrypt the
Primary Keys

– Primary Keys are not
stored in clear in the
CPU Flash

Protection “at rest”

M0LECON	2021

Multi-Layer Security

In order to separate responsibilities and roles, it is strongly suggested to
implement software compartments (or layers) owned by specific entities

For example, the following layers can be implemented to manage 3 entities/
ownerships:

1. Boot, owned by the FACTORY (HW maker)
2. Main Application, owned by the OEM (Integrator)
3. User Functions, owned by the USER (Final Customer)

Each layer must be protected by (at least) one secret (key) to operate on it
(e.g. delete, update, etc.)

M0LECON	2021

MPU and Privileged Modes

Region
Number

Address Size Permission Attributes

1 B5_POLICIES_ADDRESS B5_MPU_REGION_SIZE_4KB B5_MPU_PRI_RW_USR_RO B5_MPU_ATTR_CACHE |
B5_MPU_ATTR_SHARE

2 B5_KEYS_RAM_ADDRESS B5_MPU_REGION_SIZE_128KB B5_MPU_PRI_RW_USR_NOACCESS B5_MPU_ATTR_CACHE |
B5_MPU_ATTR_SHARE

3 … … … …

4 … … … …

5 … … … …

6 … … … …

7 … … … …

8 … … … …

Default regions are RW for Privileged and NO_ACCESS for Unprivileged

M0LECON	2021

Interrupt Communication

There are 2 main ways to call subroutines
1. Standard Calls
2. Interrupt Calls (software interrupts)

Standard Calls Interrupt Calls

– Execution Privilege
UNCHANGED

– Usually Thread Mode to
Thread Mode (subroutine
which calls another
subroutine)

– Sometimes Handle Mode to
Handle Mode (interrupt which
calls a subroutines)

– Implemented through a BL/BX
ARM instruction

– Execution Privilege temporarily
changes to PRIVILEGED

– From Thread Mode to Handle
Mode (subroutine which calls a
software interrupt)

– When in Handle Mode,
interrupt calls cannot be
executed since interrupts are
disabled under interrupt
routines execution

– Implemented through a
software interrupt call

M0LECON	2021

Privileged Unprivileged

Usual Execution Flow

BOOT

MAIN  
APP

USR  
FNC

Libraries &
Drivers

RESET

Standard
Call

Standard
Call

Standard
Call

Interrupt
Call

M0LECON	2021

Advanced Linker Usage

M0LECON	2021

Program Image and Execution

+-----------+	0x1000	8000	\	
|		Unused			|													|	
+-----------+													|	
|		ZI	data		|	<--(clear)		|	RAM	
+-----------+													|	
|		RW	data		|	<--(copy)---|---+	
+-----------+	0x1000	0000	/			|	
																														|	
																														|	
+-----------+	0x0008	0000	\			|	
|		Unused			|													|			|	
+-----------+													|			|	
|		RW	init		|-------------|---+	
+-----------+													|	
|		RO	data		|													|	ROM	(Flash)	
+-----------+													|	
|	User	code	|													|	
+-----------+													|	
|	Boot	code	|													|	
+-----------+													|	
|		Vectors		|													|	
+-----------+	0x0000	0000	/

✓ RO (or TEXT), Read Only
• RO-CODE (or CODE)
• RO-DATA (or CONST)

✓ RW, Read/Write
• RW-CODE
• RW-DATA

✓ ZI (or BSS), Zero Initialised

M0LECON	2021

Program Flash

const int read_only_variable = 2000;
int data_variable = 500;

void my_function(void){
 int x;
 x = 200;
}

• read_only_variable is stored in the Read
Only Data and set to 2000

• data_variable is stored in the “Copy of
RAM Data” section (RW init) and set to 500.
It will be copied to the RAM Data section
(RW Data) when the program starts
(double space)

• x value is stored in the literal pool. When
my_function is called x is allocated in the
stack and set to its value stored in the
literal pool

M0LECON	2021

Program RAM - Static Allocation

int data_var = 500;
int bss_var0;
int bss_var1 = 0;

void my_function(void){
 int uninitialized_var;
}

• data_var is stored in the Data Section and
is set to 500

• bss_var0 and bss_var1 are stored in the
BSS section (ZI Data) (no double space)

• When my_function is called
uninitialized_var is allocated on the stack

M0LECON	2021

Program RAM - Dynamic Allocation

• buffer is allocated on the heap

• When my_function is called
uninitialized_var is allocated on the stack
and set to its value stored in the literal pool

void my_func(void){
 char * buffer;

int uninitialized_var = 3;

 buffer = malloc(512);
 if (buffer == NULL)
 return;
 memset(buffer, 0, 512);
 free(buffer);
}

M0LECON	2021

Main Stack and Process Stack

• The processor uses a full descending stack (SP holds the address of the last stacked item)

• New stack items decrements the Stack Pointer

• The processor implements two stacks: Main Stack and Process Stack

Processor Mode Privilege Level Stack Used

Thread Privileged or Unprivileged Main Stack or Process Stack

Handle Privileged Main Stack

M0LECON	2021

Scatter Files

Scatter-loading is usually required for implementing embedded systems because these use ROM, RAM and
memory-mapped peripherals

Situations where scatter-loading is either required or very useful

• Complex memory maps
Code and data that must be placed into many distinct areas of memory require detailed instructions on where to place
the sections in the memory space.

• Different types of memory
Many systems contain a variety of physical memory devices such as flash, ROM, SDRAM, and fast SRAM. A scatter-
loading description can match the code and data with the most appropriate type of memory. For example, interrupt
code might be placed into fast SRAM to improve interrupt response time but infrequently-used configuration
information might be placed into slower flash memory.

• Memory-mapped peripherals
The scatter-loading description can place a data section at a precise address in the memory map so that memory
mapped peripherals can be accessed.

• Functions at a constant location
A function can be placed at the same location in memory even though the surrounding application has been modified
and recompiled. This is useful for jump table implementation.

M0LECON	2021

Scatter File Structure

• A scatter file contains one or
more load regions

• Each load region contains one
or more execution regions

M0LECON	2021

Load Region

A load region description has the following components:

• A name (used by the linker to identify different load regions)

• A base address (the start address for the code and data in the load view)

• Attributes that specify the properties of the load region

• An optional maximum size specification

• One or more execute regions

M0LECON	2021

Execution Region

An execution region description has the following components:

• A name (used by the linker to identify different execution regions)

• A base address (either absolute or relative)

• Attributes that specify the properties of the execution region

• An optional maximum size specification

• One or more input section descriptions (the modules placed into this execution region)

M0LECON	2021

Input Section

An input section description identifies input sections by:

• Module name (object filename, library member name or library filename)

• Input section name or input section attributes such as READ-ONLY or CODE.

• Symbol name

Wildcard characters can be used

M0LECON	2021

Static Calls through function pointers

typedef int (* tMyAppFunction) (unsigned char *inputData,
 unsigned int inputDataLen,
 unsigned char *outputData,
 unsigned int outputDataLen);

static tMyAppFunction myAppFunction = (tMyAppFunction) (0x08004000 + 1);

• Define a function pointer

• Set function pointer to a proper Code Entry Point

M0LECON	2021

True Random Noise Generator

M0LECON	2021

TRNG Block Diagram

• Based on an analog circuit which
generates continuous analog noise
that feed a Linear Feedback Shift
Register (LFSR) in order to produce a
32-bit random number.

• The analog circuit is made of several
ring oscillators whose outputs are
XORed.

• The LFSR is clocked by a dedicated
clock (PLL48CLK) at a constant
frequency, so that the quality of the
random number is independent of the
HCLK frequency.

• The contents of LFSR is transferred into
the data register (RNG_DR) when a
significant number of seeds have been
introduced into LFSR.

M0LECON	2021

TRNG Customisation Path

TRNG
Data Register

RNG_DR LFSR

Customisation
Polynomial

Filtering

Whitening
Filter

Noise
Analog

Circuitry

• 32-bit random numbers, generated by the analog circuitry, seed the LFSR

• The Polynomial can be changed to customise the noise behaviour

• The Filtering block applies mathematical functions tu whiten the noise

Xa Yd Yp Yf

M0LECON	2021

Filtering Function

Most wanted properties

• Increase Entropy

• Generate white-like spectrum

• Fit statistical tests

Encryption algorithms usually fit the requirements above

AES256

SHA2
Yd IV

Yp Yf
Noise

M0LECON	2021

Conclusion

Is you hardware target
using Secure Programming Strategies?

YES

Ready for
DEFENCE

NO

Ready for
ATTACK

M0LECON	2021

www.blu5group.com

