Hacking Hardware Devices

Antonio Varriale
Blu5 Group

MOLECON 2021 g‘

Blu5 Group

Global Presence

Blu5 Holdings Pte Ltd

Holds 100% shares of Blu5 Group companies
Fully Owned in Singapore

- Intellectual Property

- Mechanisms

- Protocols

Lard
F

Design

- Key Technologies
- Brands

p——c1
vi*
BluS View Pte Ltd
Singapore HQ
Sales APAC /.3
4 {e
' — BluS Fabs Limited

) Taiwan
— Blu5 Labs Limited Manufacturing

C’onR&DTeam - G ﬂ Q
iy BEJDe (1O CO

Blu5 Group solid international presence is based on three operational companies, main office in
Singapore, R&D facilities in Europe and manufacturing in Asia Pacific.

Sales and Field Support network, managed by partners over 3 continents, is expanding to match the
company growth.

MOLECON 20621

The first Open Security Platform in a Single Chip

11111

CPU FPGA SMART CARD

MOLECON 20621

The first micro SD card with a
Secure Environment onboard

é MOLECON 20621

A myriad of micro devices are coming

But don't expect the same OS that you find on mobile devices,
PCs and servers.

v Code once, run on 8-bit (e.g., Arduino

v 6LoWPAN, IPv6, RPL, UDP, TCP, QUIC
Mega 2560), 16-bit (e.g., MSP430), and
32-bit platforms v MQTT-SN, CoAP, and CBOR
¢ Robust runtime system v BLE, LoRaWAN, 802.15.4, WLAN, CAN
v Modular for flexible code-footprint v LwM2M client integration
v Fosters energy-efficiency v Static and dynamic memory allocation
v Real-time capable by limiting interrupt v High resolution and long-term timers
latency (~50 clock cycles) and priority- v Tools and utilities (System shell, Crypto
based scheduling primitives, ...
(<25 bytes per thread) embedded hardware in the loop

MOLECON 20621

Is you hardware target
using Secure Programming Strategies?

Ready for Ready for
DEFENCE ATTACK

. é MOLECON 20621

Hardware Features & Tools

. g MOLECON 20621

Most Wanted Features for Performance/Security

v Full integration on single die
(core, flash, sram, EEPROM)

v” High Performances

v Floating Point

v DSP Libraries

v’ Low power consumption

v’ Dynamic Power scaling (100uA/MHz)
v" HW Crypto Accelerators

v True Random Noise Generator

v’ Debug Lock

v Integrity and Tamper Protection

v' Memory Protection Unit

v In-line Firmware Update (memory segmentation, flash technology)

. MOLECON 20621

Focus on Security Requirements

v~ Protection from Software Attacks
- Firmware Corruption (Buffer overflows, stack corruptions, ...)
« Untrusted firmware update
- Debug activation
- Wrong execution, denial of service

v Protection from Hardware Attacks
- Fault injection by physical attacks on the system, external to package
- Out of range usage
- Glitch on supplies or clocks
- Radiation exposure

- Side channel attacks: spy product to get secrets (power supply, electromagnetic
radiations, ...)

- Internal fault injection after decapsulation (Force nodes by probing, laser beam, ...)
- Reverse engineering (code/data extraction)
- Circuit modification (fib: focused ion beam, ...)

MOLECON 20621

Example: STM32F4x Main Technical Specs

Core: ARM 32-bit CortexTM-M4 CPU with FPU
Adaptive real-time accelerator (ART AcceleratorTM) allowing 0-
wait state execution from Flash memory
frequency up to 168 MHz, memory protection unit, 210 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions
Memories
— Up to 1 Mbyte of Flash memory
—Up to 192+4 Kbytes of SRAM including 64-Kbyte of CCM (core
coupled memory) dataRAM
Clock, reset and supply management
4-t0-26 MHz crystal oscillator
— Internal 16 MHz factory-trimmed RC (1% accuracy)
— Internal 32 kHz RC with calibration
Low power
— Sleep, Stop and Standby modes
Debug mode
— Serial wire debug (SWD) & JTAG interfaces
— Cortex-M4 Embedded Trace MacrocellTM « Up to 140 I/O ports
with interrupt capability
Up to 138 5 V-tolerant I/Os
Up to 15 communication interfaces
Up to 4 USARTs/2 UARTSs (10.5 Mbit/s, ISO
8- to 14-bit parallel camera interface up to 54 Mbytes/s
True random number generator

MOLECON 20621

Up to 2-Mbyte
dual bank Flash
TFT LCD controller
Chrom-ART Accelerator ™

FMC/SRAM/NOR/NAND/
CF/SDRAM

80-byte + 4-Kbyte
backup SRAM
512 OTP bytes

ART Accelerator™

System

Power supply
1.2V regulator
POR/PDR/PVD
Xtal oscillators
32 kHz + 4 to 26 MHz
Internal RC oscillators
32 kHz + 16 MHz

ARM Cortex-M4
180 MHz

Clock control Connectivity

Camera interface
6x SPI, 2x I2S, 3x 12C?

Ethernet MAC 10/100
with IEEE 1588

2x CAN 2.0B
1x USB 2.0 OTG FS/HS'
1x USB 2.0 OTG FS

1x SysTick timer
82/114/140/168 1/0s
2x watchdogs
(independent and
window)

Cyclic redundancy
check (CRC

Floating point unit (FPU)
Nested vector interrupt
controller (NVIC)

MPU
JTAG/SW debug/ETM

Multi-AHB bus matrix
16-channel DMA < SAl

Crypto/hash processor? (Serial audio interface)

3DES, AES 256,
GCM, CCM Analog

4x USART + 4 UART
LIN, smartcard, IrDA,
modem control

Control
2x 16-bit motor control

PWM
Synchronized AC timer

I

5x 16-bit timers SHA-1, SHA-256, 2-channel 2x 12-bit DAC
2x 32-bit timers MD5, HMAC 3x 12-bit ADC
3x 16-bit timers . . m 24 channels / 2 MSPS
T et (g TemPerature sensor_
S

- =
=3
@
7]

. HS requires an external PHY connected to the ULPI interface
Crypto/hash processor on STM32F415, STM32F417, STM32F437 and STM32F439
With digital filter feature

CMSIS-DSP

T—

[XYN]

http://www .keil.com/pack/doc/CMSIS/DSP/html/index.html

Cortex-M4 CMSIS-DSP

Cycle counts

CLASS INSTRUCTION ARMSE-S CORTEX-M3 Cortex-M4
Arithmetic ALU operation (not PC) 1-2 1 1
ALU operation to PC 3 -4 3 3
CLZ 1 1 1
QADD, QDADD, QSUB, QDSUB 1 =2 n/a 1
QADD8, QADD16, QSUB8, QSUB16 n/a n/a 1
QDADD, QDSUB n/a n/a 1
QASX, QSAX, SASX, SSAX n/a n/a 1
SHASX, SHSAX, UHASX, UHSAX n/a n/a 1
SADD8, SADD16, SSUB8, SSUB16 n/a n/a 1
SHADD8, SHADD16, SHSUB8, SHSUB16 n/a n/a 1
UQADD8, UQADD16, UQSUB8, UQSUB16 n/a n/a 1
UHADD8, UHADD16, UHSUB8, UHSUB16 n/a n/a 1
UADD8, UADD16, USUB8, USUB16 n/a n/a 1
UQASX, UQSAX, USAX, UASX n/a n/a 1
UXTAB, UXTAB16, UXTAH n/a n/a 1
USAD8, USADAS8 n/a n/a 1 —_—
Multiplication MUL, MLA 2 -3 1-2 1
MULS, MLAS 4 1-2 1
SMULL, UMULL, SMLAL, UMLAL 3 -4 5 = 7 1
SMULBB, SMULBT, SMULTB, SMULTT 1-2 n/a 1
SMLABB, SMLBT, SMLATB, SMLATT 1-2 n/a 1 Sinale
SMULWB, SMULWT, SMLAWB, SMLAWT 1-2 n/a 1 g
SMLALBB, SMLALBT, SMLALTB, SMLALTT 2 -3 n/a 1 - cycle
SMLAD, SMLADX, SMLALD, SMLALDX n/a n/a 1 MAC
SMLSD, SMLSDX n/a n/a 1
SMLSLD, SMLSLD n/a n/a 1
SMMLA, SMMLAR, SMMLS, SMMLSR n/a n/a 1
SMMUL, SMMULR n/a n/a 1
SMUAD, SMUADX, SMUSD, SMUSDX n/a n/a 1
UMAAL n/a n/a il e
Division SDIV, UDIV n/a 2 - 12 2 - 12

MOLECON 20621

Code Example: FIR

N
xlﬁ[n] 2-1 Z‘l 2‘1
— * .
n| — Z X, . n-1] T C_ [
Yaolnl = & X gln-1] * € [i]
=1 €,el0] cel1] w2l Y c.elN]
L\ T v Yu[“]'
Cortex-M3 Code Segment: Cortex-M4 Code Segment:
FIR_LOOP: FIR_LOOP:
LDR R2,[RO],#4 ;(2) Load input X, LDR R2,[RO],#4 ;(1) Load input X;s[n-i],x;g[n-1i-1]
LDR R3,[R1],#4 ;(2) Load coeff cy LDR R3, [R1],#4 ;(2) Load coeff cc[i], cyc[i+1]
SXTH R4, R2 ;(1) Extract x,[n-i] SUBS R5, R5, #2 ;(1) loop count -= 2
ASR R2, R2,#16 ;(1) Extract X,s[n-i-1] SMLAD R4, R2, R3 (1) yj +=Xy6[n-i,n-i-1]*Cye[1,1i+1]
SXTH RS5, R3 ;(1) Extract cyg[i] BNE FIR_LOOP ;(2)
ASR R3, R3,#16 ;(1) Extract c,[i+1]

MLA R6, R4, RS ;(2) ys, += Xyg[n-i]*cyg[i]

2
MLA R6, R2, R3 ;(2) y; += Xy¢[n-i-1]*c, [i+1] B oo Kernel Total Number of Register
SuBs R7, R7, #2 ;(1) loop count -= 2 cycles Cycles Instructions usage

BNE FIR_LOOP sC2)
Cortex-M3
Note:
1. In these examples, FIR_LOOP is unrolled by 2 Cortex-M4 B 7 5 5
2. This example assumes number of taps is even. Advantage 8x ~2 2x 2x 1.4x

MOLECON 20621

Low Power Modes

The ST32F4xx features 3 low power modes

- SLEEP, core stopped, peripheral running (2mA @ 2 MHz, 38mA @ 120MHz)
- STOP, clocks stopped, RAM, registers kept (1TmA)
- STANBY, only backup domain kept, return via RESET (150uA)

Low power Conditions Wakeup
mode time in
us

Sleep mode 1 Typ

Stop mode regulator in Run mode 13 Typ

Stop mode regulator in low power mode 17 Typ

Stop mode regulator in low power mode and Flash in Deep 110 Typ
power down mode

Standby mode 375 Typ

. MOLECON 20621

Privilege Levels: Privileged & Unprivileged

v Privileged/System Level
- The software can use all the instructions and has access to all resources
- Privileged software executes at the privileged level

v Unprivileged/User Level
- The software has limited access to the MSR and MRS instructions (copy

immediate values from/to Processor Status Register) and cannot use the CPS
(Change Processor Status) instruction

- The software cannot access the system timer, NVIC or system control block
- might have restricted access to memory or peripherals (Through MPU)

. MOLECON 20621

Modes: Threads & Interrupts

v Thread Mode
- Used to execute application Software
- The processor enters Thread mode when it comes out of reset
- Thread mode can be both Privileged and Unprivileged

v Handle Mode
- Used to handle exceptions
- The processor returns to Thread mode when it has finished exception
processing
- Handle mode is always Privileged

. MOLECON 20621

Execution State Diagram

Thread Mode Handle Mode

Reset d Privileged

Privil d
Control riviiege

Register
Transition

Unprivileged

MOLECON 20621

Memory Protection Unit

The Memory Protection Unit (MPU) divides the memory map into a number of
regions and defines the location, size, access permission and memory attributes
of each region, supporting:

- Independent attribute settings for each region
- Overlapping regions
- Export of memory attributes to the system

The Memory attributes affect behaviour of memory access to the region

- Eight separate memory regions, 0-7
- background region (default)

The MPU register can be set in privileged level only

. MOLECON 20621

Readout/JTAG Protection

Readout protection

- BLOCKED access to memory from
SRAM, system memory and JTAG

- Remove readout protection possible
after full erase of the memory and its
blank verification

Level 1

RDP != 0xCC
RDP != OxAA

JTAG Fuse
« No Un-Protecting possible
- JTAG disable

« System Memory disable
- User settings protected

Un-Protected

+ No readout protection
+ Full access to memory from SRAM,
system memory and JTAG

Level 2 Level O

RDP = 0xCC RDP = OxAA

MOLECON 20621

True Random Noise Generator Features

v’ 32-bit Random Numbers, produced by an analog generator Generator
v’ Clocked by a dedicated clock (PLL48CLK)

v 40 periods of the PLL48CLK clock signal between two consecutive random
numbers

v FIPS 140-2 compliant

v~ Hardware runtime check
v 5flags (1 x valid data ready, 2 x abnormal sequence, 2 x frequency error)
v 1lInterrupt (abnormal sequence or frequency error)

. MOLECON 20621

True Random Noise Generator Block Diagram

RNG_CLK
v
i A Error management
l LFSR 5

32"“::"0"‘ < (Linear Feedback et Clock checker SEEiES 1
—,—| Shiit register) !
[e« Fault detector | i r
I i = $
: | [
S| ot I ;
% Analog Seed [
1 f
b U — - '

§ o+ & & 4

Interrupt — o
enablef -DIIDY SECS CECs Flags

RNG interrupt to <
NVIC | ,‘-:

MOLECON 20621

Integrity and Tamper Protection

— Integrity & Safety 2 — Tamper Protection
v CRC Calculation Unit v Backup Domain
v Power Supply Integrity Monitoring v RTC (alarm timestamp)
v Clock Security System v RTC Register protection
v Error Correction Code v Backup Registers
v Parity Check v GPIO Configuration Locking
v Temperature Sensor v Watchdogs

. MOLECON 20621

In-line firmware update

It is possible thanks to the permanent memory segmentation
and to the use of modern flash technology instead of EEPROM

— Flash Behaviour 2 Example)

Set1to0

Current Value:
The single bit can be modified 1j0j1]1]6]1]0]0[0]1

Set 0 to 1 Written Value; [0(0(0(1(1(1|0|1/1|1

The whole sector must be
modified

Actual Value: 0|0|0|110/10/0/0(1

. MOLECON 20621

Development Tool

Keil™ Development Tool is an ARM® product which includes

— C/C++ Compiler,

— Debugager,

— Integrated Environment,
— Simulation Models,

— Libraries,

— Debug and Trace adapters

Window Help
L el X NCEES
o || E e @
powt == e
o A a2 A b - Swu Val lin T i i
WorkSpace xstonbns + onoaoo0rie Min Time, Max Time: Range. Grid Zoom
=2 2 0146806 | 20701345 | 20000005 | 0000005 | [in | [Oun]
3 Smulator
&3 Startup Code i N
A 5IMIZ XS 14\ AN A
= £ Fash Optons /A JANTAY A
() STM32F10x0F /v \ / \ /
= & Retarget ‘V‘ i \' Y, / v’ i
% [# Retarget.c
& & Lbrary 21000005
4 [#1LCD_abitc K E I g >
+ [3 Serialc
| Fmsene L - —=
= @ STM32_Int.c Tools by ARM = [Binky.c -
= & Source ® adc_Init (void)
% [3 Binky.c . . ¢ main (void)
= &5 Documentation I S I o n® @ SysTick_Handler (void)
() Abstract.txt = [Gplo.c
S ‘fp“’ , Integrated Development Environment ° ’"3“("9“’7()
= #3 Smulator © S2Pressed (vod
= &3 Startup Code © S3Pressed (void)
£ STM32F10x.5 #- [LCD_abt.c
< &5 Infialsation KEIL is a trademark and pVision is a registered trademark of ARM Ltd.All rights reserved. = [Retarget.c
+ [STM32_Int.c This product is protected by US and international laws. © _sys_exit (Int return_coc
= &3 Source ¢ _ttywrch (ntch)
+ @ Gpo.c v if (Clockls) { © ferror (FILE* f)
< | = Clockls = ° :getcSFILE:l) . 3
Clilleimen © AeeAswiatom am e & frabe fint ch £N EX
[E project egisters <
Command v a x cal Stack v 3 X Memory1 vax
1 A [StackFrames [Value/address Address: [oi0000000 [E 4
’ = & main() I |
- v <invisible > + McESTMS2 .
alog(3) @ AD_value | <invisible>
log (3.000000) entered. @ AD_scaled.. | 0x00000036
La “ADC_ConvertedValue v @ AD_scaled | <invisible >
< >
> 1
ASSIGN BreakDisable BreakEnable Breakxill ||ical stack @wcals l,‘au‘.‘szmx I_ES)mb;\;l pees :
Simulation 11: 2.07013396 sec

MOLECON 20621

Secure Programming Strategies

. é MOLECON 20621

Secure Programming Strategies

v’ Chained Security
v All Secrets encrypted by Primary Keys
v’ Primary Keys Encrypted by Master Keys
v’ Master Keys decrypted/derived by after successful login
v’ Multi-Layer Security (e.g. Factory/OEM/user, etc.)
v’ Roles separation
v Keys separation
v' Memory Protection Unit
v Privileged/Unprivileged execution
vy~ Software Interrupt Calls

. MOLECON 20621

Chained Security

v" No clear MASTER KEYS stored in the CPU FLASH
v Evenifitis notaccessible via JTAG!
v’ No clear Login Password stored in the CPU FLASH
v Even ifitis not accessible via JTAG!
v’ Secrets available only in MPU protected RAM areas after successful login

Protect Send/Verify Decrypt
Primary

Keys

Derive
Master Keys

Login
Channel

Login
Password

- Atleast a Secondary - Login Password - Use Login Password - Master Keys are used
pwd must be used must be updated and Secondary to decrypt the
- Secondary Pwd must be - Login Password is 'F\’na::tv:?:((i;g Derive Primary Keys
updated not sent in clear - Primary Keys are not
. on the channel - Master Keys are not stored in clear in the
- Secondary Pwd is . . stored in the CPU CPU Flash
expendable - Login Password is Flash
- Channel protected (e.g not stored in the
with ECDH + Secondary CPU Flash
Password) X " ”
‘ Protection “at rest
T —— ——

MOLECON 20621

Multi-Layer Security

In order to separate responsibilities and roles, it is strongly suggested to
implement software compartments (or layers) owned by specific entities

For example, the following layers can be implemented to manage 3 entities/
ownerships:

1. Boot, owned by the FACTORY (HW maker)
2. Main Application, owned by the OEM (Integrator)
3. User Functions, owned by the USER (Final Customer)

Each layer must be protected by (at least) one secret (key) to operate on it
(e.g. delete, update, etc.)

. MOLECON 20621

MPU and Privileged Modes

Region Address Size Permission Attributes
Number

B5_MPU_ATTR_CACHE |
B5_MPU_ATTR_SHARE

B5_POLICIES_ADDRESS B5_MPU_REGION_SIZE_4KB B5_MPU_PRI_RW_USR_RO

B5_MPU_ATTR_CACHE |

B5_KEYS_RAM_ADDRESS B5_MPU_REGION_SIZE_128KB B5_MPU_PRI_RW_USR_NOACCESS BS. MPU ATTR. SHARE

Default regions are RW for Privileged and NO_ACCESS for Unprivileged

MOLECON 20621

Interrupt Communication

There are 2 main ways to call subroutines

1. Standard Calls
2. Interrupt Calls (software interrupts)

Standard Calls

Execution Privilege
UNCHANGED

Usually Thread Mode to
Thread Mode (subroutine
which calls another
subroutine)

Sometimes Handle Mode to
Handle Mode (interrupt which
calls a subroutines)

Implemented through a BL/BX
ARM instruction

Interrupt Calls

Execution Privilege temporarily
changes to PRIVILEGED

From Thread Mode to Handle
Mode (subroutine which calls a
software interrupt)

When in Handle Mode,
interrupt calls cannot be
executed since interrupts are
disabled under interrupt
routines execution

Implemented through a
software interrupt call

MOLECON 20621

Usual Execution Flow

Privileged Unprivileged

RESET

Standard
Call

Standard |“t(e:rl;lllpt
Call a

Standard

Libraries & Eall

Drivers

MOLECON 20621

Advanced Linker Usage

. g MOLECON 20621

Program Image and Execution

v RO (or TEXT), Read Only T inueed |00 5o T
+ RO-CODE (or CODE) e | en(cteany | ran
« RO-DATA (or CONST) fommmmmms + |
| RW data | <--(copy)---|---+
Fommmm e m + Ox1000 0000 / |
v RW, Read/Write I
« RW-CODE R + 0x0008 0000 \ |
« RW-DATA | Unused | I I
| RW init |------------- |---+
v ZI (or BSS), Zero Initialised | Ro data | I ROM (Flash)
T |
— |
- o + |
| Vectors | |
P + OX0000 0000 /

. MOLECON 20621

Program Flash

const int read _only variable = 2000;
I nt data_variable = 500;

void ny_function(void){
I nt X;
x = 200;

} End of Program Flash —»-

Copy of RAM “Data” section

« read_only_variable is stored in the Read Read Only Data
Only Data and set to 2000

o data_variable is stored in the “Copy of Text (Executable Code
RAM Data” section (RW init) and set to 500. Includes Literal Values)
It will be copied to the RAM Data section
(RW Data) when the program starts Start of Program Flash —
(double space)

e Xx value is stored in the literal pool. When
my_function is called x is allocated in the
stack and set to its value stored in the
literal pool

MOLECON 20621

Program RAM - Static Allocation

I nt data var = 500;

I nt bss_var0O; End of Program RAM

Y

I nt bss varl = 0O; Stack
voi d ny_function(void){ i
Int uninitialized var;

}
e data_var is stored in the Data Section and T

is set to 500

Heap

e bss_var0 and bss_var1 are stored in the BSS Bacfion

BSS section (ZI Data) (no double space)
e When my_function is called Data Section

uninitialized var is allocated on the stack R——

\

MOLECON 20621

Program RAM - Dynamic Allocation

void my_func(void){

char x buffer; End of Program RAM >
int uninitialized var = 3; Stack
buffer = malloc(512); l
if (buffer == NULL)

return;

memset (buffer, 0, 512);
free(buffer);

} T

Heap
o bufferis allocated on the heap BSS Section
e When my_function is called _
uninitialized_var is allocated on the stack DataSeclign

\

and set to its value stored in the literal pool Start of Program RAM

MOLECON 20621

Main Stack and Process Stack

e The processor uses a full descending stack (SP holds the address of the last stacked item)
e New stack items decrements the Stack Pointer

e The processor implements two stacks: Main Stack and Process Stack

Thread Privileged or Unprivileged Main Stack or Process Stack

Handle Privileged Main Stack

MOLECON 20621

Scatter Files

Scatter-loading is usually required for implementing embedded systems because these use ROM, RAM and
memory-mapped peripherals

Situations where scatter-loading is either required or very useful

o Complex memory maps
Code and data that must be placed into many distinct areas of memory require detailed instructions on where to place
the sections in the memory space.

 Different types of memory
Many systems contain a variety of physical memory devices such as flash, ROM, SDRAM, and fast SRAM. A scatter-
loading description can match the code and data with the most appropriate type of memory. For example, interrupt
code might be placed into fast SRAM to improve interrupt response time but infrequently-used configuration
information might be placed into slower flash memory.

e Memory-mapped peripherals
The scatter-loading description can place a data section at a precise address in the memory map so that memory
mapped peripherals can be accessed.

e Functions at a constant location
A function can be placed at the same location in memory even though the surrounding application has been modified
and recompiled. This is useful for jump table implementation.

MOLECON 20621

Scatter File Structure

Scatter description

e A scatter file contains one or LaAD_ROM_1 0x0000 " Load region descripon
|]
more load regions EXEC_ROM_1 0x0000 | __—Execution region description
{ al
. . program1.0 (+RO) ¢——-"‘/ Input section description
e Each load region contains one) S
° ° / Execution region descnpnon
DRAM 0x18000 0x8000 d
or more execution regions DRAM 0x18000 0% FUIhpuisecionimoiiin
program1.0 (+RW,+Zl) 111
}
)
Load region descripti
{LOAD_ROM_2 0x4000 | Ly AN R ComXPo
Execution region description
{EXEC_ROM_Z 0x4000 ,// o
Input section description
program2.0 (+RO) ‘,/ﬂ'/
} Execution region description
SRAM 0x8000 0x8000 LU)
Input secti ipti
* program2.o (+RW,+Z1) P e Ll
) X N
} \ N\
\ X
\ N\
Module selector pattern Input section attributes

MOLECON 20621

Load Region

A load region description has the following components:

e A name (used by the linker to identify different load regions)

e A base address (the start address for the code and data in the load view)
o Attributes that specify the properties of the load region

e An optional maximum size specification

e One or more execute regions

Load region description

LOAD_ROM_1 0x0000 "
{
A load region description contains
EXEC_ROM_1 0x0000 one or more execution region
{ // descriptions
programl.o (+R0) ol

}

DRAM 0x18000 0x8000

{
programl.o (+RW,+ZI)

}

MOLECON 20621

Execution Region

An execution region description has the following components:

e A name (used by the linker to identify different execution regions)

e A base address (either absolute or relative)

o Attributes that specify the properties of the execution region

e An optional maximum size specification

e One or more input section descriptions (the modules placed into this execution region)

Execution region description
EXEC_ROM_1 0x0000

{

An execution region description contains
programl.o (+RO) e one or more input section descriptions

}

MOLECON 20621

Input Section

An input section description identifies input sections by:
e Module name (object filename, library member name or library filename)

e Input section name or input section attributes such as READ-ONLY or CODE.
e Symbol name

Wildcard characters can be used

Input section description

program2.o || (+RO)

\ N\

\ \
Module select pattern Input section selector

MOLECON 20621

Static Calls through function pointers

e Define a function pointer

e Set function pointer to a proper Code Entry Point

typedef int (* tMyAppFunction) (unsigned char *inputData,
unsi gned i nt | nput Dat aLen,
unsi gned char *out put Dat a,
unsi gned i nt out put Dat aLen) ;

static t MyAppFuncti on myAppFunction = (t MyAppFunction) (0x08004000 + 1);

.

e N

FLASH SECTOR 1 2 3 0x08004000 (0xC000) {

FLASH SECTOR 1 2 3 0x08004000 (0xC000)

{
*.o (APP_Entry,+FIRST)
.ANY

}

RAM APPLICATION (0x20000000 + 0x8000) (0x8000)

{
.ANY (+RW +2I)

}
}

. 7

MOLECON 20621

True Random Noise Generator

. é MOLECON 20621

TRNG Block Diagram

e Based on an analog circuit which
. . < 32-bit AHB bus >

generates continuous analog noise
that feed a Linear Feedback Shift @ ﬁdata register
Register (LFSR) in order to produce a Control register RNG_DR
32-bit random number. RNG_CR ﬁ

e The analog circuit is made of several RNG_CLK > LFSR
ring oscillators whose outputs are i !
XORed Status register feeq a quear Feedback

ed. Clock checker & Shift Register
. . RNG _SR | fault detect
e The LFSRis clocked by a dedicated i

clock (PLL48CLK) at a constant
frequency, so that the quality of the
random number is independent of the
HCLK frequency.

Analog seed

e The contents of LFSR is transferred into
the data register (RNG_DR) when a
significant number of seeds have been
introduced into LFSR.

MOLECON 20621

TRNG Customisation Path

e 32-bit random numbers, generated by the analog circuitry, seed the LFSR
e The Polynomial can be changed to customise the noise behaviour

e The Filtering block applies mathematical functions tu whiten the noise

Circuitry g
TRNG Customisation Whitening
Data Register Polynomial Filter

. MOLECON 20621

Filtering Function

Most wanted properties

e Increase Entropy
e Generate white-like spectrum

e Fit statistical tests

Noise

Encryption algorithms usually fit the requirements above

. MOLECON 20621

Conclusion

Is you hardware target
using Secure Programming Strategies?

Ready for Ready for
DEFENCE ATTACK

. é MOLECON 20621

www.blu5group.com

MOLECON 20621

