

Attackers vs AI: how AI detects cyber threats

Daniele Ucci

Molecon'21, December 2-4, Turin

- Malware evolution
- Artificial Intelligence and Machine Learning applied to cybersecurity
- Common techniques used by attackers
- The infamous Wannacry ransomware
- The Astaroth malware family
- o Offensive Al

Malware evolution

Source: IKARUS Software Security GmbH

Politecnico di Torino - m0leCon Computer Security Conference 2021

- The 2000s marked the transition from malware with either "noble" or "less-noble" purposes to:
 - recruit computers in a botnet in order to attack companies and organizations
 - industrial virtual espionage
 - mass surveillance
 - attack (h)ac(k)tivists
 - MaaS
- From single malicious software authors, now attackers are organized in cybercriminal organizations structured as companies

Politecnico di Torino - m0leCon Computer Security Conference 2021

Malware evolution

The 2000s marked the transition from malware 0

Sources – On the left: freebeacon.com. Stolen F-35 Secrets Now Showing Up in China's Stealth Fighter, 2014. On the right:⁵ guora.com. US F-35 compared to Chinese J-31, 2018.

in order to attack c

- The 2000s marked the transition from malware with either "noble" or "less-noble" purposes to:
 - recruit computers in a botnet in order to attack companies and organizations
 - industrial virtual espionage
 - attack (h)ac(k)tivists
 - MaaS
- From single malicious software authors, now attackers are organized in cybercriminal organizations structured as companies

AUSTRALIA

TECHNOLOGY CONSULTING

- Given the huge amount of information to process and the failure of classic approaches:
 - analysis processes should be automated as much as possible
 - security analysts should be supported by tools enabling the identification of possible cyber threats
- Artificial Intelligence (AI) can back their analyses highlighting suspicious events that are worth to be investigated by analysts

AUSTRALLA

TECHNOLOGY CONSULTING

- Branch of artificial intelligence
- Allows an application to perform an activity without being explicitly programmed to do so by building a mathematical model
- Machine learning algorithms are responsible for creating mathematical models based on a data samples
- Differs from statistical approaches because:
 - there exist lots of statistical models able to make predictions, but accuracy is not one of their strengths

ML for cybersecurity

- provides more predictional power at the cost of a less interpretable mathematical model
- needs for a data sample for model creation
- ML-driven investigations can leverage different approaches:
 - supervised
 - unsupervised
 - semi-supervised

 Classification is a typical example of supervised learning:

> Process for assigning an observation to a specific class on the basis of a labeled knowledge base, namely

- observation: bytes sent by a monitored machine → class: legit data transfer/data exfiltration
- observation: HTTP traffic → suspicious HTTP traffic/ legit HTTP traffic

Overview on ML

AUSTRALIA

TECHNOLOGY CONSULTING

• Clustering is a typical example of unsupervised learning:

• Task of grouping similar observations, like

Overview on ML

• observation: DNS query \rightarrow similar to legit queries/similar to suspicious queries

11

- o DGA
- o IP Flux
- o Covert channel over DNS
- Covert channel over HTTP
- o Host/Port scan
- Encrypted communications
- o ...

TECHNOLOGY CONSULTING

- Attributed^{1,2} to the APT Lazarus Group:
 - a North Korean state-sponsored cyber threat group
 - active since 2009
 - responsible for many disruptive attacks (e.g., the wiper attack against Sony Pictures Entertainment)
- Wannacry samples use:
 - DGA
 - host/port scan

¹ WSJ.com. It's Official: North Korea Is Behind WannaCry. <u>https://www.wsj.com/articles/its-official-north-korea-is-behind-wannacry-1513642537</u>. ² MITRE.org. Wannacry. <u>https://attack.mitre.org/software/S0366/</u>.

VOLOGY CONSULTING

- Exploitation of MS implementation of SMB protocol through Eternal Blue³
- Wannacry attempts to contact kill-switch domains to establish if it has to encrypt disk(s)
 - kill-switch domains are of the form www[.]iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea[.] com⁴
 - Infected machines querying kill-switch domains are more active in the network with respect to healthy machines⁵
- Infected systems not able to contact kill-switch domains starts a reconnaissance phase and concurrently encrypt data

³ MITRE.org. CVE-2017-0144. <u>https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2017-0144</u>.
 ⁴ FireEye.com. Wannacry Ransomware Campaign: Threat Details and Risk Management. <u>https://www.fireeye.com/blog/products-and-services/2017/05/wannacry-ransomware-campaign.html</u>.
 ⁵ Cisco.com. The Hours of WannaCry. <u>https://umbrella.cisco.com/blog/the-hours-of-wannacry</u>.

The infamous Wannacry ransomware

 $\overline{\mathbf{O}}$

- Reconnaissance phase consists in
 - scanning random IPs for open TCP 445 ports⁶
 - about 25 IP addresses per second

to rapidly spread the infection

- Execution of Eternal Blue exploit to infect machines with open TCP 445 ports
- Reconnaissance and exploitation phase are run in parallel

⁶ FireEye.com. Wannacry Ransomware Campaign: Threat Details and Risk Management. <u>https://www.fireeye.com/blog/products-and-services/2017/05/wannacry-ransomware-campaign.html</u>.

Politecnico di Torino - m0leCon Computer Security Conference 2021

 Kill-switch domains seem to be obtained from "someone smashed a few keys on the upper rows of the keyboard"⁷

Figure: Character distance and frequency of the kill-switch domain "iuqerfsodp9ifjaposdfjhgosurijfaewewergwea"

⁷ Cisco.com. The Hours of WannaCry. <u>https://umbrella.cisco.com/blog/the-hours-of-wannacry</u>.

 However, kill-switch domains look like as algorithmically generated, also known as Domain Generated Algorithm

Figure: Character distance and frequency of the kill-switch domain "iuqerfsodp9ifjaposdfjhgosurijfaewewergwea"

- DNS query peaks in a specific time window are outliers that deviate from the usual query volume of a machine
- Outliers can be determined on the basis of the combination of statistical indicators which model deviations from machine usual DNS queries

AUSTRALIA

TECHNOLOGY CONSULTING

USA

18

- Characterizing features of domains involved in DNS query peaks are extracted
- A clustering algorithm can be applied on extracted features to group similar domains
- Resulting clusters represent legitimate domains and possible different DGAs

TECHNOLOGY CONSULTING

AUSTRALIA

- Both cluster and lexical analyses establish the presence of possible algorithmically generated domains
- Resolutions of these domains increases the criticality level

AUSTRALIA

TECHNOLOGY CONSULTING

USA.

20

- Host and port scannings can be identified by
 - analyzing flags of connections between machines that represent
 - TCP and UDP pings, TCP ACK pings, and TCP SYN pings in case of host discovery
 - TCP and UDP scans and TCP SYN/NULL/FIN scans in case of port scans
 - collecting features about the number of destination machines (and ports) reached in a specific time interval
 - outliers in collected features describe likely scanning activities

- Astaroth⁸ samples are trojans and steal information about
 - e-mails
 - e-commerce
 - banking accounts
- Attacks companies in Europe and Latin America since late 2017
- In July 2021, samples have been distributed in a Malspam campaign through mails containing an infected link

- The infected link provides access to a compressed Powershell script performing different infection stages:
 - creation of a support file specifying a C&C domain
 - HTTP connection to C&C to download an XML file containing
 - Javascript source code executed to download malicious DLLs
 - a compiler for guaranteeing persistence
- Downloaded DLLs extract sensitive information, later exfiltrated to either predetermined or algorithmically generated malicious domains
- Communications with the C&C are established through DGA and are both encrypted and in clear

Detect covert channels over DNS with ML

• A covert channel is a technique to communicate, transfer or exfiltrate data using different protocols, after having exploited machines in a network⁹

COVERT CHANNEL OVER DNS	
Query DNS	⊥Date
c26f48940a185559ca2e5cbf35e10136.mifahfjheijjgfoosdspdsfjeummcsde.ga 🚯	Nov 21, 2021 23:43:03 ()
4b0ddc0f8956802871583519f0383b5b.mifahfjheijjgfoosdspdsfjeummcsde.ga 0	Nov 21, 2021 23:42:54 🟮
b389d4484a3df27544c79cd0e2ccc436.mifahfjheijjgfoosdspdsfjeummcsde.ga 0	Nov 21, 2021 23:42:51 0
f8db5951fcc6d67d9cba15cf0d1c4307.mifahfjheijjgfoosdspdsfjeummcsde.ga 3	Nov 21, 2021 23:42:42 🟮
4c0d1fa067186f2e5db94bffa7f05fb4.mifahfjheijjgfoosdspdsfjeummcsde.ga 🟮	Nov 21, 2021 23:42:38 🟮
3d7ef392f93b5155607a6eccf1ae3f13.mifahfjheijjgfoosdspdsfjeummcsde.ga 0	Nov 21, 2021 23:39:12 0

Figure: Examples of covert channel over DNS used by a sample belonging to the Astaroth malware family

⁹ Saeli S., Bisio F., Lombardo P., and Massa D. (2020). DNS Covert Channel Detection via Behavioral Analysis: a Machine Learning Approach. MALWARE conference, 2020.

Detect covert channels over DNS with ML

4

COVERT CHANNEL OVER DNS

c26f48940a185559ca2e5cbf35e10136.mifahfjheijjgfoosdspdsfjeummcsde.ga 🜖

b389d4484a3df27544c79cd0e2ccc436.mifahfjheijjgfoosdspdsfjeummcsde.ga 🟮

f8db5951fcc6d67d9cba15cf0d1c4307.mifahfjheijjgfoosdspdsfjeummcsde.ga 🟮

4c0d1fa067186f2e5db94bffa7f05fb4.mifahfjheijjgfoosdspdsfjeummcsde.ga 🕄

3d7ef392f93b5155607a6eccf1ae3f13.mifahfjheijjgfoosdspdsfjeummcsde.ga 0

4b0ddc0f8956802871583519f0383b5b.mifahfjheijjgfoosdspdsfjeummcsde.ga 🛚 🕂 🔶

Query DNS

Feature extraction:

- upper-lowercase ratio of DNS queries
- numbers-letters ratio of DNS queries
- o max length per level
- o hostname length

0 ...

Image: Date Nov 21, 2021 23:43:03 Image: Date Nov 21, 2021 23:42:54 Nov 21, 2021 23:42:54 Image: Date Nov 21, 2021 23:42:51 Image: Date Image: Date

Nov 21, 2021 23:39:12 🐧

Detect covert channels over DNS with ML

- A one-class SVM classifier is trained with the features previously dicussed, periodically extracted from legit DNS queries
- Features extracted from real-time DNS queries are given in input to the SVM to test if they are legitimate or anomalous
- Suspicious DNS queries are then aggregated with other anomaly indicators to classify them as malicious, such as:
 - high number of unique requests/hostnames to/per domain
 - high query entropy
 - high distance of monograms and bigrams distributions of the query from dictionary ones

Detect anomalies in encrypted communications with ML

 $\widehat{\mathbf{O}}$

- Suspicious encrypted communications can be detected by analyzing and extracting features from exchanged secure protocol (e.g., HTTPS) messages
- The extraction phase processes SSL/TLS metadata and data contained in the fields of X.509 certificates to detect anomalies in a SSL/TLS handshake
- Suspicious connections are identified by combining unsupervised ML technique with JA3 hashes
- A JA3 hash is a client fingerprint of a SSL/TLS flow

```
"version" : "TLSv12",
"server_name" : "teams.microsoft.com",
"curve" : "secp384r1".
"subject" : "CN=teams.microsoft.com",
"issuer" : "CN=Microsoft RSA TLS CA 01.
            O=Microsoft Corporation, C=US",
"server cert chain" : [
  "md5" : "28211f1f8a50966b518ec39d3546d57d",
  "sha1" : "4a263f1f39dd526901987ecdb09e2d1297e2bc51".
  "x509" :
      "version" : 3.
      "key type" : "rsa".
      "key_alg" : "rsaEncryption",
      "key_length" : 2048,
      "sig_alg" : "sha256WithRSAEncryption",
      "not valid before" : 1606847889.0.
      "not_valid_after" : 1638383889.0,
      "subject" : "CN=teams.microsoft.com",
      "issuer" : "CN=Microsoft RSA TLS CA 01.
                  O=Microsoft Corporation, C=US",
"ja3" : "7f805430de1e7d98b1de033adb58cf46",
ia3s" : "0f14538e1c9070becdad7739c67d6363".
"cipher" : "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
"machineDest" : "TEAMS_MICROSOFT_COM"
```

AUSTRALIA FUROP TECHNOLOGY CONSULTING

Detect anomalies in encrypted communications with ML

- Suspicious encrypted communications can be detected by analyzing and extracting features from exchanged secure protocol (e.g., HTTPS) messages
- The extraction phase processes SSL/TLS metadata and data contained in the fields of X.509 certificates to detect anomalies in a SSL/TLS handshake
- Suspicious connections are identified by combining unsupervised ML technique with JA3 hashes
- A JA3 hash is a client fingerprint of a SSL/TLS flow

Offensive Al

EUROPE

TECHNOLOGY CONSULTING

USA

29

Source: Inovex.de. Robustifying Machine Perception for Image Recognition Systems: Defense Against the Dark Arts. 2019. <u>https://www.inovex.de/</u> <u>de/blog/machine-perception-face-recognition/</u>

Offensive Al

Source: Inovex.de. Robustifying Machine Perception for Image Recognition Systems: Defense Against the Dark Arts. 2019. <u>https://www.inovex.de/</u> <u>de/blog/machine-perception-face-recognition/</u>

Politecnico di Torino - m0leCon Computer Security Conference 2021

TECHNOLOGY CONSULTING

Thanks for your attention

Contacts:

daniele.ucci@aizoongroup.com

Follow us on Twitter: @aizoongroup

